forked from XiaoMo/ChatGPT-Next-Web
282 lines
7.4 KiB
TypeScript
282 lines
7.4 KiB
TypeScript
import {
|
|
DEFAULT_API_HOST,
|
|
DEFAULT_MODELS,
|
|
OpenaiPath,
|
|
REQUEST_TIMEOUT_MS,
|
|
} from "@/app/constant";
|
|
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
|
|
|
|
import { ChatOptions, getHeaders, LLMApi, LLMModel, LLMUsage } from "../api";
|
|
import Locale from "../../locales";
|
|
import {
|
|
EventStreamContentType,
|
|
fetchEventSource,
|
|
} from "@fortaine/fetch-event-source";
|
|
import { prettyObject } from "@/app/utils/format";
|
|
import { getClientConfig } from "@/app/config/client";
|
|
|
|
export interface OpenAIListModelResponse {
|
|
object: string;
|
|
data: Array<{
|
|
id: string;
|
|
object: string;
|
|
root: string;
|
|
}>;
|
|
}
|
|
|
|
export class ChatGPTApi implements LLMApi {
|
|
private disableListModels = true;
|
|
|
|
path(path: string): string {
|
|
let openaiUrl = useAccessStore.getState().openaiUrl;
|
|
const apiPath = "/api/openai";
|
|
|
|
if (openaiUrl.length === 0) {
|
|
const isApp = !!getClientConfig()?.isApp;
|
|
openaiUrl = isApp ? DEFAULT_API_HOST : apiPath;
|
|
}
|
|
if (openaiUrl.endsWith("/")) {
|
|
openaiUrl = openaiUrl.slice(0, openaiUrl.length - 1);
|
|
}
|
|
if (!openaiUrl.startsWith("http") && !openaiUrl.startsWith(apiPath)) {
|
|
openaiUrl = "https://" + openaiUrl;
|
|
}
|
|
return [openaiUrl, path].join("/");
|
|
}
|
|
|
|
extractMessage(res: any) {
|
|
return res.choices?.at(0)?.message?.content ?? "";
|
|
}
|
|
|
|
async chat(options: ChatOptions) {
|
|
const messages = options.messages.map((v) => ({
|
|
role: v.role,
|
|
content: v.content,
|
|
}));
|
|
|
|
const modelConfig = {
|
|
...useAppConfig.getState().modelConfig,
|
|
...useChatStore.getState().currentSession().mask.modelConfig,
|
|
...{
|
|
model: options.config.model,
|
|
},
|
|
};
|
|
|
|
const requestPayload = {
|
|
messages,
|
|
stream: options.config.stream,
|
|
model: modelConfig.model,
|
|
temperature: modelConfig.temperature,
|
|
presence_penalty: modelConfig.presence_penalty,
|
|
frequency_penalty: modelConfig.frequency_penalty,
|
|
top_p: modelConfig.top_p,
|
|
};
|
|
|
|
console.log("[Request] openai payload: ", requestPayload);
|
|
|
|
const shouldStream = !!options.config.stream;
|
|
const controller = new AbortController();
|
|
options.onController?.(controller);
|
|
|
|
try {
|
|
const chatPath = this.path(OpenaiPath.ChatPath);
|
|
const chatPayload = {
|
|
method: "POST",
|
|
body: JSON.stringify(requestPayload),
|
|
signal: controller.signal,
|
|
headers: getHeaders(),
|
|
};
|
|
|
|
// make a fetch request
|
|
const requestTimeoutId = setTimeout(
|
|
() => controller.abort(),
|
|
REQUEST_TIMEOUT_MS,
|
|
);
|
|
|
|
if (shouldStream) {
|
|
let responseText = "";
|
|
let finished = false;
|
|
|
|
const finish = () => {
|
|
if (!finished) {
|
|
options.onFinish(responseText);
|
|
finished = true;
|
|
}
|
|
};
|
|
|
|
controller.signal.onabort = finish;
|
|
|
|
fetchEventSource(chatPath, {
|
|
...chatPayload,
|
|
async onopen(res) {
|
|
clearTimeout(requestTimeoutId);
|
|
const contentType = res.headers.get("content-type");
|
|
console.log(
|
|
"[OpenAI] request response content type: ",
|
|
contentType,
|
|
);
|
|
|
|
if (contentType?.startsWith("text/plain")) {
|
|
responseText = await res.clone().text();
|
|
return finish();
|
|
}
|
|
|
|
if (
|
|
!res.ok ||
|
|
!res.headers
|
|
.get("content-type")
|
|
?.startsWith(EventStreamContentType) ||
|
|
res.status !== 200
|
|
) {
|
|
const responseTexts = [responseText];
|
|
let extraInfo = await res.clone().text();
|
|
try {
|
|
const resJson = await res.clone().json();
|
|
extraInfo = prettyObject(resJson);
|
|
} catch {}
|
|
|
|
if (res.status === 401) {
|
|
responseTexts.push(Locale.Error.Unauthorized);
|
|
}
|
|
|
|
if (extraInfo) {
|
|
responseTexts.push(extraInfo);
|
|
}
|
|
|
|
responseText = responseTexts.join("\n\n");
|
|
|
|
return finish();
|
|
}
|
|
},
|
|
onmessage(msg) {
|
|
if (msg.data === "[DONE]" || finished) {
|
|
return finish();
|
|
}
|
|
const text = msg.data;
|
|
try {
|
|
const json = JSON.parse(text);
|
|
const delta = json.choices[0].delta.content;
|
|
if (delta) {
|
|
responseText += delta;
|
|
options.onUpdate?.(responseText, delta);
|
|
}
|
|
} catch (e) {
|
|
console.error("[Request] parse error", text, msg);
|
|
}
|
|
},
|
|
onclose() {
|
|
finish();
|
|
},
|
|
onerror(e) {
|
|
options.onError?.(e);
|
|
throw e;
|
|
},
|
|
openWhenHidden: true,
|
|
});
|
|
} else {
|
|
const res = await fetch(chatPath, chatPayload);
|
|
clearTimeout(requestTimeoutId);
|
|
|
|
const resJson = await res.json();
|
|
const message = this.extractMessage(resJson);
|
|
options.onFinish(message);
|
|
}
|
|
} catch (e) {
|
|
console.log("[Request] failed to make a chat request", e);
|
|
options.onError?.(e as Error);
|
|
}
|
|
}
|
|
async usage() {
|
|
const formatDate = (d: Date) =>
|
|
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d
|
|
.getDate()
|
|
.toString()
|
|
.padStart(2, "0")}`;
|
|
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
|
|
const now = new Date();
|
|
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
|
|
const startDate = formatDate(startOfMonth);
|
|
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
|
|
|
|
const [used, subs] = await Promise.all([
|
|
fetch(
|
|
this.path(
|
|
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
|
|
),
|
|
{
|
|
method: "GET",
|
|
headers: getHeaders(),
|
|
},
|
|
),
|
|
fetch(this.path(OpenaiPath.SubsPath), {
|
|
method: "GET",
|
|
headers: getHeaders(),
|
|
}),
|
|
]);
|
|
|
|
if (used.status === 401) {
|
|
throw new Error(Locale.Error.Unauthorized);
|
|
}
|
|
|
|
if (!used.ok || !subs.ok) {
|
|
throw new Error("Failed to query usage from openai");
|
|
}
|
|
|
|
const response = (await used.json()) as {
|
|
total_usage?: number;
|
|
error?: {
|
|
type: string;
|
|
message: string;
|
|
};
|
|
};
|
|
|
|
const total = (await subs.json()) as {
|
|
hard_limit_usd?: number;
|
|
};
|
|
|
|
if (response.error && response.error.type) {
|
|
throw Error(response.error.message);
|
|
}
|
|
|
|
if (response.total_usage) {
|
|
response.total_usage = Math.round(response.total_usage) / 100;
|
|
}
|
|
|
|
if (total.hard_limit_usd) {
|
|
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
|
|
}
|
|
|
|
return {
|
|
used: response.total_usage,
|
|
total: total.hard_limit_usd,
|
|
} as LLMUsage;
|
|
}
|
|
|
|
async models(): Promise<LLMModel[]> {
|
|
if (this.disableListModels) {
|
|
return DEFAULT_MODELS.slice();
|
|
}
|
|
|
|
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
|
|
method: "GET",
|
|
headers: {
|
|
...getHeaders(),
|
|
},
|
|
});
|
|
|
|
const resJson = (await res.json()) as OpenAIListModelResponse;
|
|
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
|
|
console.log("[Models]", chatModels);
|
|
|
|
if (!chatModels) {
|
|
return [];
|
|
}
|
|
|
|
return chatModels.map((m) => ({
|
|
name: m.id,
|
|
available: true,
|
|
}));
|
|
}
|
|
}
|
|
export { OpenaiPath };
|