ChatGPT-Next-Web/app/store/config.ts

178 lines
4.2 KiB
TypeScript

import { create } from "zustand";
import { persist } from "zustand/middleware";
import { LLMModel } from "../client/api";
import { getClientConfig } from "../config/client";
import { DEFAULT_INPUT_TEMPLATE, DEFAULT_MODELS, StoreKey } from "../constant";
export type ModelType = (typeof DEFAULT_MODELS)[number]["name"];
export enum SubmitKey {
Enter = "Enter",
CtrlEnter = "Ctrl + Enter",
ShiftEnter = "Shift + Enter",
AltEnter = "Alt + Enter",
MetaEnter = "Meta + Enter",
}
export enum Theme {
Auto = "auto",
Dark = "dark",
Light = "light",
}
export const DEFAULT_CONFIG = {
submitKey: SubmitKey.CtrlEnter as SubmitKey,
avatar: "1f603",
fontSize: 14,
theme: Theme.Auto as Theme,
tightBorder: !!getClientConfig()?.isApp,
sendPreviewBubble: true,
sidebarWidth: 300,
disablePromptHint: false,
dontShowMaskSplashScreen: false, // dont show splash screen when create chat
hideBuiltinMasks: false, // dont add builtin masks
customModels: "",
models: DEFAULT_MODELS as any as LLMModel[],
modelConfig: {
model: "gpt-3.5-turbo" as ModelType,
temperature: 0.5,
top_p: 1,
max_tokens: 2000,
presence_penalty: 0,
frequency_penalty: 0,
sendMemory: true,
historyMessageCount: 4,
compressMessageLengthThreshold: 1000,
enableInjectSystemPrompts: true,
template: DEFAULT_INPUT_TEMPLATE,
},
};
export type ChatConfig = typeof DEFAULT_CONFIG;
export type ChatConfigStore = ChatConfig & {
reset: () => void;
update: (updater: (config: ChatConfig) => void) => void;
mergeModels: (newModels: LLMModel[]) => void;
allModels: () => LLMModel[];
};
export type ModelConfig = ChatConfig["modelConfig"];
export function limitNumber(
x: number,
min: number,
max: number,
defaultValue: number,
) {
if (typeof x !== "number" || isNaN(x)) {
return defaultValue;
}
return Math.min(max, Math.max(min, x));
}
export const ModalConfigValidator = {
model(x: string) {
return x as ModelType;
},
max_tokens(x: number) {
return limitNumber(x, 0, 32000, 2000);
},
presence_penalty(x: number) {
return limitNumber(x, -2, 2, 0);
},
frequency_penalty(x: number) {
return limitNumber(x, -2, 2, 0);
},
temperature(x: number) {
return limitNumber(x, 0, 1, 1);
},
top_p(x: number) {
return limitNumber(x, 0, 1, 1);
},
};
export const useAppConfig = create<ChatConfigStore>()(
persist(
(set, get) => ({
...DEFAULT_CONFIG,
reset() {
set(() => ({ ...DEFAULT_CONFIG }));
},
update(updater) {
const config = { ...get() };
updater(config);
set(() => config);
},
mergeModels(newModels) {
if (!newModels || newModels.length === 0) {
return;
}
const oldModels = get().models;
const modelMap: Record<string, LLMModel> = {};
for (const model of oldModels) {
model.available = false;
modelMap[model.name] = model;
}
for (const model of newModels) {
model.available = true;
modelMap[model.name] = model;
}
set(() => ({
models: Object.values(modelMap),
}));
},
allModels() {
const customModels = get()
.customModels.split(",")
.filter((v) => !!v && v.length > 0)
.map((m) => ({ name: m, available: true }));
const models = get().models.concat(customModels);
return models;
},
}),
{
name: StoreKey.Config,
version: 3.6,
migrate(persistedState, version) {
const state = persistedState as ChatConfig;
if (version < 3.4) {
state.modelConfig.sendMemory = true;
state.modelConfig.historyMessageCount = 4;
state.modelConfig.compressMessageLengthThreshold = 1000;
state.modelConfig.frequency_penalty = 0;
state.modelConfig.top_p = 1;
state.modelConfig.template = DEFAULT_INPUT_TEMPLATE;
state.dontShowMaskSplashScreen = false;
state.hideBuiltinMasks = false;
}
if (version < 3.5) {
state.customModels = "claude,claude-100k";
}
if (version < 3.6) {
state.modelConfig.enableInjectSystemPrompts = true;
}
return state as any;
},
},
),
);