import { DEFAULT_API_HOST, OpenaiPath, REQUEST_TIMEOUT_MS, } from "@/app/constant"; import { useAccessStore, useAppConfig, useChatStore } from "@/app/store"; import { ChatOptions, getHeaders, LLMApi, LLMModel, LLMUsage } from "../api"; import Locale from "../../locales"; import { EventStreamContentType, fetchEventSource, } from "@fortaine/fetch-event-source"; import { prettyObject } from "@/app/utils/format"; export interface OpenAIListModelResponse { object: string; data: Array<{ id: string; object: string; root: string; }>; } export class ChatGPTApi implements LLMApi { path(path: string): string { let openaiUrl = useAccessStore.getState().openaiUrl; if (openaiUrl.length === 0) { openaiUrl = DEFAULT_API_HOST; } if (openaiUrl.endsWith("/")) { openaiUrl = openaiUrl.slice(0, openaiUrl.length - 1); } if (!openaiUrl.startsWith("http") && !openaiUrl.startsWith("/api/openai")) { openaiUrl = "https://" + openaiUrl; } return [openaiUrl, path].join("/"); } extractMessage(res: any) { return res.choices?.at(0)?.message?.content ?? ""; } async chat(options: ChatOptions) { const messages = options.messages.map((v) => ({ role: v.role, content: v.content, })); const modelConfig = { ...useAppConfig.getState().modelConfig, ...useChatStore.getState().currentSession().mask.modelConfig, ...{ model: options.config.model, }, }; const requestPayload = { messages, stream: options.config.stream, model: modelConfig.model, temperature: modelConfig.temperature, presence_penalty: modelConfig.presence_penalty, frequency_penalty: modelConfig.frequency_penalty, top_p: modelConfig.top_p, }; console.log("[Request] openai payload: ", requestPayload); const shouldStream = !!options.config.stream; const controller = new AbortController(); options.onController?.(controller); try { const chatPath = this.path(OpenaiPath.ChatPath); const chatPayload = { method: "POST", body: JSON.stringify(requestPayload), signal: controller.signal, headers: getHeaders(), }; // make a fetch request const requestTimeoutId = setTimeout( () => controller.abort(), REQUEST_TIMEOUT_MS, ); if (shouldStream) { let responseText = ""; let finished = false; const finish = () => { if (!finished) { options.onFinish(responseText); finished = true; } }; controller.signal.onabort = finish; fetchEventSource(chatPath, { ...chatPayload, async onopen(res) { clearTimeout(requestTimeoutId); const contentType = res.headers.get("content-type"); console.log( "[OpenAI] request response content type: ", contentType, ); if (contentType?.startsWith("text/plain")) { responseText = await res.clone().text(); return finish(); } if ( !res.ok || !res.headers .get("content-type") ?.startsWith(EventStreamContentType) || res.status !== 200 ) { const responseTexts = [responseText]; let extraInfo = await res.clone().text(); try { const resJson = await res.clone().json(); extraInfo = prettyObject(resJson); } catch {} if (res.status === 401) { responseTexts.push(Locale.Error.Unauthorized); } if (extraInfo) { responseTexts.push(extraInfo); } responseText = responseTexts.join("\n\n"); return finish(); } }, onmessage(msg) { if (msg.data === "[DONE]" || finished) { return finish(); } const text = msg.data; try { const json = JSON.parse(text); const delta = json.choices[0].delta.content; if (delta) { responseText += delta; options.onUpdate?.(responseText, delta); } } catch (e) { console.error("[Request] parse error", text, msg); } }, onclose() { finish(); }, onerror(e) { options.onError?.(e); throw e; }, openWhenHidden: true, }); } else { const res = await fetch(chatPath, chatPayload); clearTimeout(requestTimeoutId); const resJson = await res.json(); const message = this.extractMessage(resJson); options.onFinish(message); } } catch (e) { console.log("[Request] failed to make a chat reqeust", e); options.onError?.(e as Error); } } async usage() { const formatDate = (d: Date) => `${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d .getDate() .toString() .padStart(2, "0")}`; const ONE_DAY = 1 * 24 * 60 * 60 * 1000; const now = new Date(); const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1); const startDate = formatDate(startOfMonth); const endDate = formatDate(new Date(Date.now() + ONE_DAY)); const [used, subs] = await Promise.all([ fetch( this.path( `${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`, ), { method: "GET", headers: getHeaders(), }, ), fetch(this.path(OpenaiPath.SubsPath), { method: "GET", headers: getHeaders(), }), ]); if (used.status === 401) { throw new Error(Locale.Error.Unauthorized); } if (!used.ok || !subs.ok) { throw new Error("Failed to query usage from openai"); } const response = (await used.json()) as { total_usage?: number; error?: { type: string; message: string; }; }; const total = (await subs.json()) as { hard_limit_usd?: number; }; if (response.error && response.error.type) { throw Error(response.error.message); } if (response.total_usage) { response.total_usage = Math.round(response.total_usage) / 100; } if (total.hard_limit_usd) { total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100; } return { used: response.total_usage, total: total.hard_limit_usd, } as LLMUsage; } async models(): Promise { const res = await fetch(this.path(OpenaiPath.ListModelPath), { method: "GET", headers: { ...getHeaders(), }, }); const resJson = (await res.json()) as OpenAIListModelResponse; const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-")); console.log("[Models]", chatModels); if (!chatModels) { return []; } return chatModels.map((m) => ({ name: m.id, available: true, })); } } export { OpenaiPath };