mirror of
https://github.com/fatedier/frp.git
synced 2025-01-23 18:04:22 +00:00
271 lines
5.5 KiB
Go
271 lines
5.5 KiB
Go
package main
|
||
|
||
import (
|
||
"bufio"
|
||
"fmt"
|
||
"log"
|
||
"os"
|
||
"strconv"
|
||
"strings"
|
||
)
|
||
|
||
// set deg here
|
||
const deg = 8 // <= 8
|
||
|
||
type polynomial [deg + 1]byte
|
||
|
||
func main() {
|
||
f, err := os.OpenFile("tables", os.O_WRONLY|os.O_CREATE, 0666)
|
||
if err != nil {
|
||
log.Fatalln(err)
|
||
}
|
||
defer f.Close()
|
||
outputWriter := bufio.NewWriter(f)
|
||
ps := genPrimitivePolynomial()
|
||
title := strconv.FormatInt(int64(deg), 10) + " degree primitive polynomial:\n"
|
||
var pss string
|
||
for i, p := range ps {
|
||
pf := formatPolynomial(p)
|
||
pf = strconv.FormatInt(int64(i+1), 10) + ". " + pf + ";\n"
|
||
pss = pss + pf
|
||
}
|
||
body := fmt.Sprintf(title+"%v", pss)
|
||
outputWriter.WriteString(body)
|
||
|
||
//set primitive polynomial here to generator tables
|
||
//x^8+x^4+x^3+x^2+1
|
||
var primitivePolynomial polynomial
|
||
primitivePolynomial[0] = 1
|
||
primitivePolynomial[2] = 1
|
||
primitivePolynomial[3] = 1
|
||
primitivePolynomial[4] = 1
|
||
primitivePolynomial[8] = 1
|
||
|
||
lenExpTable := (1 << deg) - 1
|
||
expTable := genExpTable(primitivePolynomial, lenExpTable)
|
||
body = fmt.Sprintf("expTbl: %#v\n", expTable)
|
||
outputWriter.WriteString(body)
|
||
|
||
logTable := genLogTable(expTable)
|
||
body = fmt.Sprintf("logTbl: %#v\n", logTable)
|
||
outputWriter.WriteString(body)
|
||
|
||
mulTable := genMulTable(expTable, logTable)
|
||
body = fmt.Sprintf("mulTbl: %#v\n", mulTable)
|
||
outputWriter.WriteString(body)
|
||
|
||
lowTable, highTable := genMulTableHalf(mulTable)
|
||
body = fmt.Sprintf("lowTbl: %#v\n", lowTable)
|
||
outputWriter.WriteString(body)
|
||
body = fmt.Sprintf("highTbl: %#v\n", highTable)
|
||
outputWriter.WriteString(body)
|
||
|
||
var combTable [256][32]byte
|
||
for i := range combTable {
|
||
l := lowTable[i]
|
||
for j := 0; j < 16; j++ {
|
||
combTable[i][j] = l[j]
|
||
}
|
||
h := highTable[i][:]
|
||
for k := 16; k < 32; k++ {
|
||
combTable[i][k] = h[k-16]
|
||
}
|
||
}
|
||
body = fmt.Sprintf("lowhighTbl: %#v\n", combTable)
|
||
outputWriter.WriteString(body)
|
||
|
||
inverseTable := genInverseTable(mulTable)
|
||
body = fmt.Sprintf("inverseTbl: %#v\n", inverseTable)
|
||
outputWriter.WriteString(body)
|
||
outputWriter.Flush()
|
||
}
|
||
|
||
// generate primitive Polynomial
|
||
func genPrimitivePolynomial() []polynomial {
|
||
// drop Polynomial x,so the constant term must be 1
|
||
// so there are 2^(deg-1) Polynomials
|
||
cnt := 1 << (deg - 1)
|
||
var polynomials []polynomial
|
||
var p polynomial
|
||
p[0] = 1
|
||
p[deg] = 1
|
||
// gen all Polynomials
|
||
for i := 0; i < cnt; i++ {
|
||
p = genPolynomial(p, 1)
|
||
polynomials = append(polynomials, p)
|
||
}
|
||
// drop Polynomial x+1, so the cnt of Polynomials is odd
|
||
var psRaw []polynomial
|
||
for _, p := range polynomials {
|
||
var n int
|
||
for _, v := range p {
|
||
if v == 1 {
|
||
n++
|
||
}
|
||
}
|
||
if n&1 != 0 {
|
||
psRaw = append(psRaw, p)
|
||
}
|
||
}
|
||
// order of primitive element == 2^deg -1 ?
|
||
var ps []polynomial
|
||
for _, p := range psRaw {
|
||
lenTable := (1 << deg) - 1
|
||
table := genExpTable(p, lenTable)
|
||
var numOf1 int
|
||
for _, v := range table {
|
||
// cnt 1 in ExpTable
|
||
if int(v) == 1 {
|
||
numOf1++
|
||
}
|
||
}
|
||
if numOf1 == 1 {
|
||
ps = append(ps, p)
|
||
}
|
||
}
|
||
return ps
|
||
}
|
||
|
||
func genPolynomial(p polynomial, i int) polynomial {
|
||
if p[i] == 0 {
|
||
p[i] = 1
|
||
} else {
|
||
p[i] = 0
|
||
i++
|
||
if i == deg {
|
||
return p
|
||
}
|
||
p = genPolynomial(p, i)
|
||
}
|
||
return p
|
||
}
|
||
|
||
func genExpTable(primitivePolynomial polynomial, exp int) []byte {
|
||
table := make([]byte, exp)
|
||
var rawPolynomial polynomial
|
||
rawPolynomial[1] = 1
|
||
table[0] = byte(1)
|
||
table[1] = byte(2)
|
||
for i := 2; i < exp; i++ {
|
||
rawPolynomial = expGrowPolynomial(rawPolynomial, primitivePolynomial)
|
||
table[i] = byte(getValueOfPolynomial(rawPolynomial))
|
||
}
|
||
return table
|
||
}
|
||
|
||
func expGrowPolynomial(raw, primitivePolynomial polynomial) polynomial {
|
||
var newP polynomial
|
||
for i, v := range raw[:deg] {
|
||
if v == 1 {
|
||
newP[i+1] = 1
|
||
}
|
||
}
|
||
if newP[deg] == 1 {
|
||
for i, v := range primitivePolynomial[:deg] {
|
||
if v == 1 {
|
||
if newP[i] == 1 {
|
||
newP[i] = 0
|
||
} else {
|
||
newP[i] = 1
|
||
}
|
||
}
|
||
}
|
||
}
|
||
newP[deg] = 0
|
||
return newP
|
||
}
|
||
|
||
func getValueOfPolynomial(p polynomial) uint8 {
|
||
var v uint8
|
||
for i, coefficient := range p[:deg] {
|
||
if coefficient != 0 {
|
||
add := 1 << uint8(i)
|
||
v += uint8(add)
|
||
}
|
||
}
|
||
return v
|
||
}
|
||
|
||
func genLogTable(expTable []byte) []byte {
|
||
table := make([]byte, (1 << deg))
|
||
//table[0] 无法由本原元的幂得到
|
||
table[0] = 0
|
||
for i, v := range expTable {
|
||
table[v] = byte(i)
|
||
}
|
||
return table
|
||
}
|
||
|
||
func genMulTable(expTable, logTable []byte) [256][256]byte {
|
||
var result [256][256]byte
|
||
for a := range result {
|
||
for b := range result[a] {
|
||
if a == 0 || b == 0 {
|
||
result[a][b] = 0
|
||
continue
|
||
}
|
||
logA := int(logTable[a])
|
||
logB := int(logTable[b])
|
||
logSum := logA + logB
|
||
for logSum >= 255 {
|
||
logSum -= 255
|
||
}
|
||
result[a][b] = expTable[logSum]
|
||
}
|
||
}
|
||
return result
|
||
}
|
||
|
||
func genMulTableHalf(mulTable [256][256]byte) (low [256][16]byte, high [256][16]byte) {
|
||
for a := range low {
|
||
for b := range low {
|
||
//result := 0
|
||
var result byte
|
||
if !(a == 0 || b == 0) {
|
||
//result = int(mulTable[a][b])
|
||
result = mulTable[a][b]
|
||
|
||
}
|
||
// b & 00001111, [0,15]
|
||
if (b & 0xf) == b {
|
||
low[a][b] = result
|
||
}
|
||
// b & 11110000, [240,255]
|
||
if (b & 0xf0) == b {
|
||
high[a][b>>4] = result
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
func genInverseTable(mulTable [256][256]byte) [256]byte {
|
||
var inVerseTable [256]byte
|
||
for i, t := range mulTable {
|
||
for j, v := range t {
|
||
if int(v) == 1 {
|
||
inVerseTable[i] = byte(j)
|
||
}
|
||
}
|
||
}
|
||
return inVerseTable
|
||
}
|
||
|
||
func formatPolynomial(p polynomial) string {
|
||
var ps string
|
||
for i := deg; i > 1; i-- {
|
||
if p[i] == 1 {
|
||
ps = ps + "x^" + strconv.FormatInt(int64(i), 10) + "+"
|
||
}
|
||
}
|
||
if p[1] == 1 {
|
||
ps = ps + "x+"
|
||
}
|
||
if p[0] == 1 {
|
||
ps = ps + "1"
|
||
} else {
|
||
strings.TrimSuffix(ps, "+")
|
||
}
|
||
return ps
|
||
}
|