update vendors

This commit is contained in:
fatedier
2019-08-03 18:49:55 +08:00
parent 6a99f0caf7
commit 4277405c0e
47 changed files with 1462 additions and 3399 deletions

View File

@@ -34,6 +34,7 @@ This library intents to provide a **smooth, resilient, ordered, error-checked an
1. Packet level encryption support with [AES](https://en.wikipedia.org/wiki/Advanced_Encryption_Standard), [TEA](https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm), [3DES](https://en.wikipedia.org/wiki/Triple_DES), [Blowfish](https://en.wikipedia.org/wiki/Blowfish_(cipher)), [Cast5](https://en.wikipedia.org/wiki/CAST-128), [Salsa20]( https://en.wikipedia.org/wiki/Salsa20), etc. in [CFB](https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_.28CFB.29) mode, which generates completely anonymous packet.
1. Only **A fixed number of goroutines** will be created for the entire server application, costs in **context switch** between goroutines have been taken into consideration.
1. Compatible with [skywind3000's](https://github.com/skywind3000) C version with various improvements.
1. Platform-dependent optimizations: [sendmmsg](http://man7.org/linux/man-pages/man2/sendmmsg.2.html) and [recvmmsg](http://man7.org/linux/man-pages/man2/recvmmsg.2.html) were expoloited for linux.
## Documentation
@@ -43,6 +44,24 @@ For complete documentation, see the associated [Godoc](https://godoc.org/github.
<img src="frame.png" alt="Frame Format" height="109px" />
```
NONCE:
16bytes cryptographically secure random number, nonce changes for every packet.
CRC32:
CRC-32 checksum of data using the IEEE polynomial
FEC TYPE:
typeData = 0xF1
typeParity = 0xF2
FEC SEQID:
monotonically increasing in range: [0, (0xffffffff/shardSize) * shardSize - 1]
SIZE:
The size of KCP frame plus 2
```
```
+-----------------+
| SESSION |
@@ -65,16 +84,11 @@ For complete documentation, see the associated [Godoc](https://godoc.org/github.
```
## Usage
## Examples
Client: [full demo](https://github.com/xtaci/kcptun/blob/master/client/main.go)
```go
kcpconn, err := kcp.DialWithOptions("192.168.0.1:10000", nil, 10, 3)
```
Server: [full demo](https://github.com/xtaci/kcptun/blob/master/server/main.go)
```go
lis, err := kcp.ListenWithOptions(":10000", nil, 10, 3)
```
1. [simple examples](https://github.com/xtaci/kcp-go/tree/master/examples)
2. [kcptun client](https://github.com/xtaci/kcptun/blob/master/client/main.go)
3. [kcptun server](https://github.com/xtaci/kcptun/blob/master/server/main.go)
## Benchmark
```
@@ -128,6 +142,10 @@ PASS
ok github.com/xtaci/kcp-go 50.349s
```
## Typical Flame Graph
![Flame Graph in kcptun](flame.png)
## Key Design Considerations
1. slice vs. container/list
@@ -159,6 +177,18 @@ BenchmarkNow-4 100000000 15.6 ns/op
In kcp-go, after each `kcp.output()` function call, current clock time will be updated upon return, and for a single `kcp.flush()` operation, current time will be queried from system once. For most of the time, 5000 connections costs 5000 * 15.6ns = 78us(a fixed cost while no packet needs to be sent), as for 10MB/s data transfering with 1400 MTU, `kcp.output()` will be called around 7500 times and costs 117us for `time.Now()` in **every second**.
3. Memory management
Primary memory allocation are done from a global buffer pool xmit.Buf, in kcp-go, when we need to allocate some bytes, we can get from that pool, and a fixed-capacity 1500 bytes(mtuLimit) will be returned, the rx queue, tx queue and fec queue all receive bytes from there, and they will return the bytes to the pool after using to prevent unnecessary zer0ing of bytes. The pool mechanism maintained a high watermark for slice objects, these in-flight objects from the pool will survive from the perodical garbage collection, meanwhile the pool kept the ability to return the memory to runtime if in idle.
4. Information security
kcp-go is shipped with builtin packet encryption powered by various block encryption algorithms and works in [Cipher Feedback Mode](https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)), for each packet to be sent, the encryption process will start from encrypting a [nonce](https://en.wikipedia.org/wiki/Cryptographic_nonce) from the [system entropy](https://en.wikipedia.org/wiki//dev/random), so encryption to same plaintexts never leads to a same ciphertexts thereafter.
The contents of the packets are completely anonymous with encryption, including the headers(FEC,KCP), checksums and contents. Note that, no matter which encryption method you choose on you upper layer, if you disable encryption, the transmit will be insecure somehow, since the header is ***PLAINTEXT*** to everyone it would be susceptible to header tampering, such as jamming the *sliding window size*, *round-trip time*, *FEC property* and *checksums*. ```AES-128``` is suggested for minimal encryption since modern CPUs are shipped with [AES-NI](https://en.wikipedia.org/wiki/AES_instruction_set) instructions and performs even better than `salsa20`(check the table above).
Other possible attacks to kcp-go includes: a) [traffic analysis](https://en.wikipedia.org/wiki/Traffic_analysis), dataflow on specific websites may have pattern while interchanging data, but this type of eavesdropping has been mitigated by adapting [smux](https://github.com/xtaci/smux) to mix data streams so as to introduce noises, perfect solution to this has not appeared yet, theroretically by shuffling/mixing messages on larger scale network may mitigate this problem. b) [replay attack](https://en.wikipedia.org/wiki/Replay_attack), since the asymmetrical encryption has not been introduced into kcp-go for some reason, capturing the packets and replay them on a different machine is possible, (notice: hijacking the session and decrypting the contents is still *impossible*), so upper layers should contain a asymmetrical encryption system to guarantee the authenticity of each message(to process message exactly once), such as HTTPS/OpenSSL/LibreSSL, only by signing the requests with private keys can eliminate this type of attack.
## Connection Termination
Control messages like **SYN/FIN/RST** in TCP **are not defined** in KCP, you need some **keepalive/heartbeat mechanism** in the application-level. A real world example is to use some **multiplexing** protocol over session, such as [smux](https://github.com/xtaci/smux)(with embedded keepalive mechanism), see [kcptun](https://github.com/xtaci/kcptun) for example.
@@ -169,6 +199,14 @@ Q: I'm handling >5K connections on my server, the CPU utilization is so high.
A: A standalone `agent` or `gate` server for running kcp-go is suggested, not only for CPU utilization, but also important to the **precision** of RTT measurements(timing) which indirectly affects retransmission. By increasing update `interval` with `SetNoDelay` like `conn.SetNoDelay(1, 40, 1, 1)` will dramatically reduce system load, but lower the performance.
Q: When should I enable FEC?
A: Forward error correction is critical to long-distance transmission, because a packet loss will lead to a huge penalty in time. And for the complicated packet routing network in modern world, round-trip time based loss check will not always be efficient, the big deviation of RTT samples in the long way usually leads to a larger RTO value in typical rtt estimator, which in other words, slows down the transmission.
Q: Should I enable encryption?
A: Yes, for the safety of protocol, even if the upper layer has encrypted.
## Who is using this?
1. https://github.com/xtaci/kcptun -- A Secure Tunnel Based On KCP over UDP.

12
vendor/github.com/fatedier/kcp-go/batchconn.go generated vendored Normal file
View File

@@ -0,0 +1,12 @@
package kcp
import "golang.org/x/net/ipv4"
const (
batchSize = 16
)
type batchConn interface {
WriteBatch(ms []ipv4.Message, flags int) (int, error)
ReadBatch(ms []ipv4.Message, flags int) (int, error)
}

View File

@@ -11,36 +11,34 @@ const (
fecHeaderSize = 6
fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
typeData = 0xf1
typeFEC = 0xf2
typeParity = 0xf2
)
type (
// fecPacket is a decoded FEC packet
fecPacket struct {
seqid uint32
flag uint16
data []byte
}
// fecPacket is a decoded FEC packet
type fecPacket []byte
// fecDecoder for decoding incoming packets
fecDecoder struct {
rxlimit int // queue size limit
dataShards int
parityShards int
shardSize int
rx []fecPacket // ordered receive queue
func (bts fecPacket) seqid() uint32 { return binary.LittleEndian.Uint32(bts) }
func (bts fecPacket) flag() uint16 { return binary.LittleEndian.Uint16(bts[4:]) }
func (bts fecPacket) data() []byte { return bts[6:] }
// caches
decodeCache [][]byte
flagCache []bool
// fecDecoder for decoding incoming packets
type fecDecoder struct {
rxlimit int // queue size limit
dataShards int
parityShards int
shardSize int
rx []fecPacket // ordered receive queue
// zeros
zeros []byte
// caches
decodeCache [][]byte
flagCache []bool
// RS decoder
codec reedsolomon.Encoder
}
)
// zeros
zeros []byte
// RS decoder
codec reedsolomon.Encoder
}
func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
if dataShards <= 0 || parityShards <= 0 {
@@ -66,33 +64,24 @@ func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
return dec
}
// decodeBytes a fec packet
func (dec *fecDecoder) decodeBytes(data []byte) fecPacket {
var pkt fecPacket
pkt.seqid = binary.LittleEndian.Uint32(data)
pkt.flag = binary.LittleEndian.Uint16(data[4:])
// allocate memory & copy
buf := xmitBuf.Get().([]byte)[:len(data)-6]
copy(buf, data[6:])
pkt.data = buf
return pkt
}
// decode a fec packet
func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
func (dec *fecDecoder) decode(in fecPacket) (recovered [][]byte) {
// insertion
n := len(dec.rx) - 1
insertIdx := 0
for i := n; i >= 0; i-- {
if pkt.seqid == dec.rx[i].seqid { // de-duplicate
xmitBuf.Put(pkt.data)
if in.seqid() == dec.rx[i].seqid() { // de-duplicate
return nil
} else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
} else if _itimediff(in.seqid(), dec.rx[i].seqid()) > 0 { // insertion
insertIdx = i + 1
break
}
}
// make a copy
pkt := fecPacket(xmitBuf.Get().([]byte)[:len(in)])
copy(pkt, in)
// insert into ordered rx queue
if insertIdx == n+1 {
dec.rx = append(dec.rx, pkt)
@@ -103,11 +92,11 @@ func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
}
// shard range for current packet
shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
shardBegin := pkt.seqid() - pkt.seqid()%uint32(dec.shardSize)
shardEnd := shardBegin + uint32(dec.shardSize) - 1
// max search range in ordered queue for current shard
searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
searchBegin := insertIdx - int(pkt.seqid()%uint32(dec.shardSize))
if searchBegin < 0 {
searchBegin = 0
}
@@ -130,21 +119,21 @@ func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
// shard assembly
for i := searchBegin; i <= searchEnd; i++ {
seqid := dec.rx[i].seqid
seqid := dec.rx[i].seqid()
if _itimediff(seqid, shardEnd) > 0 {
break
} else if _itimediff(seqid, shardBegin) >= 0 {
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data()
shardsflag[seqid%uint32(dec.shardSize)] = true
numshard++
if dec.rx[i].flag == typeData {
if dec.rx[i].flag() == typeData {
numDataShard++
}
if numshard == 1 {
first = i
}
if len(dec.rx[i].data) > maxlen {
maxlen = len(dec.rx[i].data)
if len(dec.rx[i].data()) > maxlen {
maxlen = len(dec.rx[i].data())
}
}
}
@@ -159,11 +148,14 @@ func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
dlen := len(shards[k])
shards[k] = shards[k][:maxlen]
copy(shards[k][dlen:], dec.zeros)
} else {
shards[k] = xmitBuf.Get().([]byte)[:0]
}
}
if err := dec.codec.ReconstructData(shards); err == nil {
for k := range shards[:dec.dataShards] {
if !shardsflag[k] {
// recovered data should be recycled
recovered = append(recovered, shards[k])
}
}
@@ -174,7 +166,7 @@ func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
// keep rxlimit
if len(dec.rx) > dec.rxlimit {
if dec.rx[0].flag == typeData { // track the unrecoverable data
if dec.rx[0].flag() == typeData { // track the unrecoverable data
atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
}
dec.rx = dec.freeRange(0, 1, dec.rx)
@@ -182,15 +174,16 @@ func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
return
}
// free a range of fecPacket, and zero for GC recycling
// free a range of fecPacket
func (dec *fecDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
for i := first; i < first+n; i++ { // recycle buffer
xmitBuf.Put(q[i].data)
xmitBuf.Put([]byte(q[i]))
}
if first == 0 && n < cap(q)/2 {
return q[n:]
}
copy(q[first:], q[first+n:])
for i := 0; i < n; i++ { // dereference data
q[len(q)-1-i].data = nil
}
return q[:len(q)-n]
}
@@ -229,7 +222,7 @@ func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
enc.dataShards = dataShards
enc.parityShards = parityShards
enc.shardSize = dataShards + parityShards
enc.paws = (0xffffffff/uint32(enc.shardSize) - 1) * uint32(enc.shardSize)
enc.paws = 0xffffffff / uint32(enc.shardSize) * uint32(enc.shardSize)
enc.headerOffset = offset
enc.payloadOffset = enc.headerOffset + fecHeaderSize
@@ -252,13 +245,16 @@ func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
// encodes the packet, outputs parity shards if we have collected quorum datashards
// notice: the contents of 'ps' will be re-written in successive calling
func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
// The header format:
// | FEC SEQID(4B) | FEC TYPE(2B) | SIZE (2B) | PAYLOAD(SIZE-2) |
// |<-headerOffset |<-payloadOffset
enc.markData(b[enc.headerOffset:])
binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
// copy data to fec datashards
// copy data from payloadOffset to fec shard cache
sz := len(b)
enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
copy(enc.shardCache[enc.shardCount], b)
copy(enc.shardCache[enc.shardCount][enc.payloadOffset:], b[enc.payloadOffset:])
enc.shardCount++
// track max datashard length
@@ -285,7 +281,7 @@ func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
if err := enc.codec.Encode(cache); err == nil {
ps = enc.shardCache[enc.dataShards:]
for k := range ps {
enc.markFEC(ps[k][enc.headerOffset:])
enc.markParity(ps[k][enc.headerOffset:])
ps[k] = ps[k][:enc.maxSize]
}
}
@@ -304,8 +300,9 @@ func (enc *fecEncoder) markData(data []byte) {
enc.next++
}
func (enc *fecEncoder) markFEC(data []byte) {
func (enc *fecEncoder) markParity(data []byte) {
binary.LittleEndian.PutUint32(data, enc.next)
binary.LittleEndian.PutUint16(data[4:], typeFEC)
binary.LittleEndian.PutUint16(data[4:], typeParity)
// sequence wrap will only happen at parity shard
enc.next = (enc.next + 1) % enc.paws
}

BIN
vendor/github.com/fatedier/kcp-go/flame.png generated vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@@ -1,9 +1,9 @@
// Package kcp - A Fast and Reliable ARQ Protocol
package kcp
import (
"encoding/binary"
"sync/atomic"
"time"
)
const (
@@ -30,6 +30,12 @@ const (
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)
// monotonic reference time point
var refTime time.Time = time.Now()
// currentMs returns current elasped monotonic milliseconds since program startup
func currentMs() uint32 { return uint32(time.Now().Sub(refTime) / time.Millisecond) }
// output_callback is a prototype which ought capture conn and call conn.Write
type output_callback func(buf []byte, size int)
@@ -145,8 +151,9 @@ type KCP struct {
acklist []ackItem
buffer []byte
output output_callback
buffer []byte
reserved int
output output_callback
}
type ackItem struct {
@@ -154,8 +161,11 @@ type ackItem struct {
ts uint32
}
// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
// NewKCP create a new kcp state machine
//
// 'conv' must be equal in the connection peers, or else data will be silently rejected.
//
// 'output' function will be called whenever these is data to be sent on wire.
func NewKCP(conv uint32, output output_callback) *KCP {
kcp := new(KCP)
kcp.conv = conv
@@ -164,7 +174,7 @@ func NewKCP(conv uint32, output output_callback) *KCP {
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = IKCP_MTU_DEF
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = make([]byte, (kcp.mtu+IKCP_OVERHEAD)*3)
kcp.buffer = make([]byte, kcp.mtu)
kcp.rx_rto = IKCP_RTO_DEF
kcp.rx_minrto = IKCP_RTO_MIN
kcp.interval = IKCP_INTERVAL
@@ -189,6 +199,19 @@ func (kcp *KCP) delSegment(seg *segment) {
}
}
// ReserveBytes keeps n bytes untouched from the beginning of the buffer,
// the output_callback function should be aware of this.
//
// Return false if n >= mss
func (kcp *KCP) ReserveBytes(n int) bool {
if n >= int(kcp.mtu-IKCP_OVERHEAD) || n < 0 {
return false
}
kcp.reserved = n
kcp.mss = kcp.mtu - IKCP_OVERHEAD - uint32(n)
return true
}
// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
if len(kcp.rcv_queue) == 0 {
@@ -214,19 +237,21 @@ func (kcp *KCP) PeekSize() (length int) {
return
}
// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
// Receive data from kcp state machine
//
// Return number of bytes read.
//
// Return -1 when there is no readable data.
//
// Return -2 if len(buffer) is smaller than kcp.PeekSize().
func (kcp *KCP) Recv(buffer []byte) (n int) {
if len(kcp.rcv_queue) == 0 {
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -1
}
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -2
}
if peeksize > len(buffer) {
return -3
return -2
}
var fast_recover bool
@@ -255,7 +280,7 @@ func (kcp *KCP) Recv(buffer []byte) (n int) {
count = 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue)+count < int(kcp.rcv_wnd) {
kcp.rcv_nxt++
count++
} else {
@@ -386,6 +411,10 @@ func (kcp *KCP) parse_ack(sn uint32) {
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if sn == seg.sn {
// mark and free space, but leave the segment here,
// and wait until `una` to delete this, then we don't
// have to shift the segments behind forward,
// which is an expensive operation for large window
seg.acked = 1
kcp.delSegment(seg)
break
@@ -474,7 +503,7 @@ func (kcp *KCP) parse_data(newseg segment) bool {
count := 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue)+count < int(kcp.rcv_wnd) {
kcp.rcv_nxt++
count++
} else {
@@ -489,8 +518,12 @@ func (kcp *KCP) parse_data(newseg segment) bool {
return repeat
}
// Input when you received a low level packet (eg. UDP packet), call it
// regular indicates a regular packet has received(not from FEC)
// Input a packet into kcp state machine.
//
// 'regular' indicates it's a real data packet from remote, and it means it's not generated from ReedSolomon
// codecs.
//
// 'ackNoDelay' will trigger immediate ACK, but surely it will not be efficient in bandwidth
func (kcp *KCP) Input(data []byte, regular, ackNoDelay bool) int {
snd_una := kcp.snd_una
if len(data) < IKCP_OVERHEAD {
@@ -634,14 +667,28 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
seg.una = kcp.rcv_nxt
buffer := kcp.buffer
// flush acknowledges
ptr := buffer
for i, ack := range kcp.acklist {
ptr := buffer[kcp.reserved:] // keep n bytes untouched
// makeSpace makes room for writing
makeSpace := func(space int) {
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
if size+space > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
ptr = buffer[kcp.reserved:]
}
}
// flush bytes in buffer if there is any
flushBuffer := func() {
size := len(buffer) - len(ptr)
if size > kcp.reserved {
kcp.output(buffer, size)
}
}
// flush acknowledges
for i, ack := range kcp.acklist {
makeSpace(IKCP_OVERHEAD)
// filter jitters caused by bufferbloat
if ack.sn >= kcp.rcv_nxt || len(kcp.acklist)-1 == i {
seg.sn, seg.ts = ack.sn, ack.ts
@@ -651,10 +698,7 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
kcp.acklist = kcp.acklist[0:0]
if ackOnly { // flash remain ack segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
flushBuffer()
return kcp.interval
}
@@ -685,22 +729,14 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
// flush window probing commands
if (kcp.probe & IKCP_ASK_SEND) != 0 {
seg.cmd = IKCP_CMD_WASK
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
makeSpace(IKCP_OVERHEAD)
ptr = seg.encode(ptr)
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_TELL) != 0 {
seg.cmd = IKCP_CMD_WINS
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
makeSpace(IKCP_OVERHEAD)
ptr = seg.encode(ptr)
}
@@ -779,20 +815,14 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
}
if needsend {
current = currentMs() // time update for a blocking call
current = currentMs()
segment.xmit++
segment.ts = current
segment.wnd = seg.wnd
segment.una = seg.una
size := len(buffer) - len(ptr)
need := IKCP_OVERHEAD + len(segment.data)
if size+need > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
makeSpace(need)
ptr = segment.encode(ptr)
copy(ptr, segment.data)
ptr = ptr[len(segment.data):]
@@ -809,10 +839,7 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
}
// flash remain segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
flushBuffer()
// counter updates
sum := lostSegs
@@ -864,6 +891,8 @@ func (kcp *KCP) flush(ackOnly bool) uint32 {
return uint32(minrto)
}
// (deprecated)
//
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
@@ -892,6 +921,8 @@ func (kcp *KCP) Update() {
}
}
// (deprecated)
//
// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
@@ -947,12 +978,16 @@ func (kcp *KCP) SetMtu(mtu int) int {
if mtu < 50 || mtu < IKCP_OVERHEAD {
return -1
}
buffer := make([]byte, (mtu+IKCP_OVERHEAD)*3)
if kcp.reserved >= int(kcp.mtu-IKCP_OVERHEAD) || kcp.reserved < 0 {
return -1
}
buffer := make([]byte, mtu)
if buffer == nil {
return -2
}
kcp.mtu = uint32(mtu)
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.mss = kcp.mtu - IKCP_OVERHEAD - uint32(kcp.reserved)
kcp.buffer = buffer
return 0
}
@@ -1006,7 +1041,13 @@ func (kcp *KCP) WaitSnd() int {
}
// remove front n elements from queue
// if the number of elements to remove is more than half of the size.
// just shift the rear elements to front, otherwise just reslice q to q[n:]
// then the cost of runtime.growslice can always be less than n/2
func (kcp *KCP) remove_front(q []segment, n int) []segment {
newn := copy(q, q[n:])
return q[:newn]
if n > cap(q)/2 {
newn := copy(q, q[n:])
return q[:newn]
}
return q[n:]
}

48
vendor/github.com/fatedier/kcp-go/readloop.go generated vendored Normal file
View File

@@ -0,0 +1,48 @@
package kcp
import (
"sync/atomic"
"github.com/pkg/errors"
)
func (s *UDPSession) defaultReadLoop() {
buf := make([]byte, mtuLimit)
var src string
for {
if n, addr, err := s.conn.ReadFrom(buf); err == nil {
// make sure the packet is from the same source
if src == "" { // set source address
src = addr.String()
} else if addr.String() != src {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
continue
}
if n >= s.headerSize+IKCP_OVERHEAD {
s.packetInput(buf[:n])
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
}
} else {
s.notifyReadError(errors.WithStack(err))
return
}
}
}
func (l *Listener) defaultMonitor() {
buf := make([]byte, mtuLimit)
for {
if n, from, err := l.conn.ReadFrom(buf); err == nil {
if n >= l.headerSize+IKCP_OVERHEAD {
l.packetInput(buf[:n], from)
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
}
} else {
l.notifyReadError(errors.WithStack(err))
return
}
}
}

11
vendor/github.com/fatedier/kcp-go/readloop_generic.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
// +build !linux
package kcp
func (s *UDPSession) readLoop() {
s.defaultReadLoop()
}
func (l *Listener) monitor() {
l.defaultMonitor()
}

120
vendor/github.com/fatedier/kcp-go/readloop_linux.go generated vendored Normal file
View File

@@ -0,0 +1,120 @@
// +build linux
package kcp
import (
"net"
"os"
"sync/atomic"
"github.com/pkg/errors"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
)
// the read loop for a client session
func (s *UDPSession) readLoop() {
// default version
if s.xconn == nil {
s.defaultReadLoop()
return
}
// x/net version
var src string
msgs := make([]ipv4.Message, batchSize)
for k := range msgs {
msgs[k].Buffers = [][]byte{make([]byte, mtuLimit)}
}
for {
if count, err := s.xconn.ReadBatch(msgs, 0); err == nil {
for i := 0; i < count; i++ {
msg := &msgs[i]
// make sure the packet is from the same source
if src == "" { // set source address if nil
src = msg.Addr.String()
} else if msg.Addr.String() != src {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
continue
}
if msg.N < s.headerSize+IKCP_OVERHEAD {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
continue
}
// source and size has validated
s.packetInput(msg.Buffers[0][:msg.N])
}
} else {
// compatibility issue:
// for linux kernel<=2.6.32, support for sendmmsg is not available
// an error of type os.SyscallError will be returned
if operr, ok := err.(*net.OpError); ok {
if se, ok := operr.Err.(*os.SyscallError); ok {
if se.Syscall == "recvmmsg" {
s.defaultReadLoop()
return
}
}
}
s.notifyReadError(errors.WithStack(err))
return
}
}
}
// monitor incoming data for all connections of server
func (l *Listener) monitor() {
var xconn batchConn
if _, ok := l.conn.(*net.UDPConn); ok {
addr, err := net.ResolveUDPAddr("udp", l.conn.LocalAddr().String())
if err == nil {
if addr.IP.To4() != nil {
xconn = ipv4.NewPacketConn(l.conn)
} else {
xconn = ipv6.NewPacketConn(l.conn)
}
}
}
// default version
if xconn == nil {
l.defaultMonitor()
return
}
// x/net version
msgs := make([]ipv4.Message, batchSize)
for k := range msgs {
msgs[k].Buffers = [][]byte{make([]byte, mtuLimit)}
}
for {
if count, err := xconn.ReadBatch(msgs, 0); err == nil {
for i := 0; i < count; i++ {
msg := &msgs[i]
if msg.N >= l.headerSize+IKCP_OVERHEAD {
l.packetInput(msg.Buffers[0][:msg.N], msg.Addr)
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
}
}
} else {
// compatibility issue:
// for linux kernel<=2.6.32, support for sendmmsg is not available
// an error of type os.SyscallError will be returned
if operr, ok := err.(*net.OpError); ok {
if se, ok := operr.Err.(*os.SyscallError); ok {
if se.Syscall == "recvmmsg" {
l.defaultMonitor()
return
}
}
}
l.notifyReadError(errors.WithStack(err))
return
}
}
}

View File

@@ -1,9 +1,17 @@
// Package kcp-go is a Reliable-UDP library for golang.
//
// This library intents to provide a smooth, resilient, ordered,
// error-checked and anonymous delivery of streams over UDP packets.
//
// The interfaces of this package aims to be compatible with
// net.Conn in standard library, but offers powerful features for advanced users.
package kcp
import (
"crypto/rand"
"encoding/binary"
"hash/crc32"
"io"
"net"
"sync"
"sync/atomic"
@@ -14,14 +22,6 @@ import (
"golang.org/x/net/ipv6"
)
type errTimeout struct {
error
}
func (errTimeout) Timeout() bool { return true }
func (errTimeout) Temporary() bool { return true }
func (errTimeout) Error() string { return "i/o timeout" }
const (
// 16-bytes nonce for each packet
nonceSize = 16
@@ -42,9 +42,9 @@ const (
acceptBacklog = 128
)
const (
errBrokenPipe = "broken pipe"
errInvalidOperation = "invalid operation"
var (
errInvalidOperation = errors.New("invalid operation")
errTimeout = errors.New("timeout")
)
var (
@@ -72,8 +72,6 @@ type (
// recvbuf turns packets into stream
recvbuf []byte
bufptr []byte
// header extended output buffer, if has header
ext []byte
// FEC codec
fecDecoder *fecDecoder
@@ -90,16 +88,27 @@ type (
// notifications
die chan struct{} // notify current session has Closed
dieOnce sync.Once
chReadEvent chan struct{} // notify Read() can be called without blocking
chWriteEvent chan struct{} // notify Write() can be called without blocking
chReadError chan error // notify PacketConn.Read() have an error
chWriteError chan error // notify PacketConn.Write() have an error
// socket error handling
socketReadError atomic.Value
socketWriteError atomic.Value
chSocketReadError chan struct{}
chSocketWriteError chan struct{}
socketReadErrorOnce sync.Once
socketWriteErrorOnce sync.Once
// nonce generator
nonce Entropy
isClosed bool // flag the session has Closed
mu sync.Mutex
// packets waiting to be sent on wire
txqueue []ipv4.Message
xconn batchConn // for x/net
xconnWriteError error
mu sync.Mutex
}
setReadBuffer interface {
@@ -119,14 +128,26 @@ func newUDPSession(conv uint32, dataShards, parityShards int, l *Listener, conn
sess.nonce.Init()
sess.chReadEvent = make(chan struct{}, 1)
sess.chWriteEvent = make(chan struct{}, 1)
sess.chReadError = make(chan error, 1)
sess.chWriteError = make(chan error, 1)
sess.chSocketReadError = make(chan struct{})
sess.chSocketWriteError = make(chan struct{})
sess.remote = remote
sess.conn = conn
sess.l = l
sess.block = block
sess.recvbuf = make([]byte, mtuLimit)
// cast to writebatch conn
if _, ok := conn.(*net.UDPConn); ok {
addr, err := net.ResolveUDPAddr("udp", conn.LocalAddr().String())
if err == nil {
if addr.IP.To4() != nil {
sess.xconn = ipv4.NewPacketConn(conn)
} else {
sess.xconn = ipv6.NewPacketConn(conn)
}
}
}
// FEC codec initialization
sess.fecDecoder = newFECDecoder(rxFECMulti*(dataShards+parityShards), dataShards, parityShards)
if sess.block != nil {
@@ -143,17 +164,12 @@ func newUDPSession(conv uint32, dataShards, parityShards int, l *Listener, conn
sess.headerSize += fecHeaderSizePlus2
}
// we only need to allocate extended packet buffer if we have the additional header
if sess.headerSize > 0 {
sess.ext = make([]byte, mtuLimit)
}
sess.kcp = NewKCP(conv, func(buf []byte, size int) {
if size >= IKCP_OVERHEAD {
if size >= IKCP_OVERHEAD+sess.headerSize {
sess.output(buf[:size])
}
})
sess.kcp.SetMtu(IKCP_MTU_DEF - sess.headerSize)
sess.kcp.ReserveBytes(sess.headerSize)
// register current session to the global updater,
// which call sess.update() periodically.
@@ -165,6 +181,7 @@ func newUDPSession(conv uint32, dataShards, parityShards int, l *Listener, conn
} else {
atomic.AddUint64(&DefaultSnmp.PassiveOpens, 1)
}
currestab := atomic.AddUint64(&DefaultSnmp.CurrEstab, 1)
maxconn := atomic.LoadUint64(&DefaultSnmp.MaxConn)
if currestab > maxconn {
@@ -186,11 +203,6 @@ func (s *UDPSession) Read(b []byte) (n int, err error) {
return n, nil
}
if s.isClosed {
s.mu.Unlock()
return 0, errors.New(errBrokenPipe)
}
if size := s.kcp.PeekSize(); size > 0 { // peek data size from kcp
if len(b) >= size { // receive data into 'b' directly
s.kcp.Recv(b)
@@ -220,7 +232,7 @@ func (s *UDPSession) Read(b []byte) (n int, err error) {
if !s.rd.IsZero() {
if time.Now().After(s.rd) {
s.mu.Unlock()
return 0, errTimeout{}
return 0, errors.WithStack(errTimeout)
}
delay := s.rd.Sub(time.Now())
@@ -229,63 +241,66 @@ func (s *UDPSession) Read(b []byte) (n int, err error) {
}
s.mu.Unlock()
// wait for read event or timeout
// wait for read event or timeout or error
select {
case <-s.chReadEvent:
case <-c:
case <-s.die:
case err = <-s.chReadError:
if timeout != nil {
timeout.Stop()
}
return n, err
}
if timeout != nil {
timeout.Stop()
case <-c:
return 0, errors.WithStack(errTimeout)
case <-s.chSocketReadError:
return 0, s.socketReadError.Load().(error)
case <-s.die:
return 0, errors.WithStack(io.ErrClosedPipe)
}
}
}
// Write implements net.Conn
func (s *UDPSession) Write(b []byte) (n int, err error) {
func (s *UDPSession) Write(b []byte) (n int, err error) { return s.WriteBuffers([][]byte{b}) }
// WriteBuffers write a vector of byte slices to the underlying connection
func (s *UDPSession) WriteBuffers(v [][]byte) (n int, err error) {
for {
s.mu.Lock()
if s.isClosed {
s.mu.Unlock()
return 0, errors.New(errBrokenPipe)
select {
case <-s.chSocketWriteError:
return 0, s.socketWriteError.Load().(error)
case <-s.die:
return 0, errors.WithStack(io.ErrClosedPipe)
default:
}
// controls how much data will be sent to kcp core
// to prevent the memory from exhuasting
s.mu.Lock()
if s.kcp.WaitSnd() < int(s.kcp.snd_wnd) {
n = len(b)
for {
if len(b) <= int(s.kcp.mss) {
s.kcp.Send(b)
break
} else {
s.kcp.Send(b[:s.kcp.mss])
b = b[s.kcp.mss:]
for _, b := range v {
n += len(b)
for {
if len(b) <= int(s.kcp.mss) {
s.kcp.Send(b)
break
} else {
s.kcp.Send(b[:s.kcp.mss])
b = b[s.kcp.mss:]
}
}
}
// flush immediately if the queue is full
if s.kcp.WaitSnd() >= int(s.kcp.snd_wnd) || !s.writeDelay {
s.kcp.flush(false)
s.uncork()
}
s.mu.Unlock()
atomic.AddUint64(&DefaultSnmp.BytesSent, uint64(n))
return n, nil
}
// deadline for current writing operation
var timeout *time.Timer
var c <-chan time.Time
if !s.wd.IsZero() {
if time.Now().After(s.wd) {
s.mu.Unlock()
return 0, errTimeout{}
return 0, errors.WithStack(errTimeout)
}
delay := s.wd.Sub(time.Now())
timeout = time.NewTimer(delay)
@@ -293,44 +308,52 @@ func (s *UDPSession) Write(b []byte) (n int, err error) {
}
s.mu.Unlock()
// wait for write event or timeout
select {
case <-s.chWriteEvent:
case <-c:
case <-s.die:
case err = <-s.chWriteError:
if timeout != nil {
timeout.Stop()
}
return n, err
}
if timeout != nil {
timeout.Stop()
case <-c:
return 0, errors.WithStack(errTimeout)
case <-s.chSocketWriteError:
return 0, s.socketWriteError.Load().(error)
case <-s.die:
return 0, errors.WithStack(io.ErrClosedPipe)
}
}
}
// uncork sends data in txqueue if there is any
func (s *UDPSession) uncork() {
if len(s.txqueue) > 0 {
s.tx(s.txqueue)
s.txqueue = s.txqueue[:0]
}
return
}
// Close closes the connection.
func (s *UDPSession) Close() error {
// remove current session from updater & listener(if necessary)
updater.removeSession(s)
if s.l != nil { // notify listener
s.l.closeSession(s.remote)
}
var once bool
s.dieOnce.Do(func() {
close(s.die)
once = true
})
s.mu.Lock()
defer s.mu.Unlock()
if s.isClosed {
return errors.New(errBrokenPipe)
if once {
// remove from updater
updater.removeSession(s)
atomic.AddUint64(&DefaultSnmp.CurrEstab, ^uint64(0))
if s.l != nil { // belongs to listener
s.l.closeSession(s.remote)
return nil
} else { // client socket close
return s.conn.Close()
}
} else {
return errors.WithStack(io.ErrClosedPipe)
}
close(s.die)
s.isClosed = true
atomic.AddUint64(&DefaultSnmp.CurrEstab, ^uint64(0))
if s.l == nil { // client socket close
return s.conn.Close()
}
return nil
}
// LocalAddr returns the local network address. The Addr returned is shared by all invocations of LocalAddr, so do not modify it.
@@ -390,7 +413,7 @@ func (s *UDPSession) SetMtu(mtu int) bool {
s.mu.Lock()
defer s.mu.Unlock()
s.kcp.SetMtu(mtu - s.headerSize)
s.kcp.SetMtu(mtu)
return true
}
@@ -412,7 +435,9 @@ func (s *UDPSession) SetACKNoDelay(nodelay bool) {
s.ackNoDelay = nodelay
}
// SetDUP duplicates udp packets for kcp output, for testing purpose only
// (deprecated)
//
// SetDUP duplicates udp packets for kcp output.
func (s *UDPSession) SetDUP(dup int) {
s.mu.Lock()
defer s.mu.Unlock()
@@ -427,19 +452,29 @@ func (s *UDPSession) SetNoDelay(nodelay, interval, resend, nc int) {
s.kcp.NoDelay(nodelay, interval, resend, nc)
}
// SetDSCP sets the 6bit DSCP field of IP header, no effect if it's accepted from Listener
// SetDSCP sets the 6bit DSCP field in IPv4 header, or 8bit Traffic Class in IPv6 header.
//
// It has no effect if it's accepted from Listener.
func (s *UDPSession) SetDSCP(dscp int) error {
s.mu.Lock()
defer s.mu.Unlock()
if s.l == nil {
if nc, ok := s.conn.(net.Conn); ok {
if err := ipv4.NewConn(nc).SetTOS(dscp << 2); err != nil {
return ipv6.NewConn(nc).SetTrafficClass(dscp)
}
if s.l != nil {
return errInvalidOperation
}
if nc, ok := s.conn.(net.Conn); ok {
var succeed bool
if err := ipv4.NewConn(nc).SetTOS(dscp << 2); err == nil {
succeed = true
}
if err := ipv6.NewConn(nc).SetTrafficClass(dscp); err == nil {
succeed = true
}
if succeed {
return nil
}
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// SetReadBuffer sets the socket read buffer, no effect if it's accepted from Listener
@@ -451,7 +486,7 @@ func (s *UDPSession) SetReadBuffer(bytes int) error {
return nc.SetReadBuffer(bytes)
}
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// SetWriteBuffer sets the socket write buffer, no effect if it's accepted from Listener
@@ -463,37 +498,29 @@ func (s *UDPSession) SetWriteBuffer(bytes int) error {
return nc.SetWriteBuffer(bytes)
}
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// post-processing for sending a packet from kcp core
// steps:
// 0. Header extending
// 1. FEC packet generation
// 2. CRC32 integrity
// 3. Encryption
// 4. WriteTo kernel
// 4. TxQueue
func (s *UDPSession) output(buf []byte) {
var ecc [][]byte
// 0. extend buf's header space(if necessary)
ext := buf
if s.headerSize > 0 {
ext = s.ext[:s.headerSize+len(buf)]
copy(ext[s.headerSize:], buf)
}
// 1. FEC encoding
if s.fecEncoder != nil {
ecc = s.fecEncoder.encode(ext)
ecc = s.fecEncoder.encode(buf)
}
// 2&3. crc32 & encryption
if s.block != nil {
s.nonce.Fill(ext[:nonceSize])
checksum := crc32.ChecksumIEEE(ext[cryptHeaderSize:])
binary.LittleEndian.PutUint32(ext[nonceSize:], checksum)
s.block.Encrypt(ext, ext)
s.nonce.Fill(buf[:nonceSize])
checksum := crc32.ChecksumIEEE(buf[cryptHeaderSize:])
binary.LittleEndian.PutUint32(buf[nonceSize:], checksum)
s.block.Encrypt(buf, buf)
for k := range ecc {
s.nonce.Fill(ecc[k][:nonceSize])
@@ -503,28 +530,23 @@ func (s *UDPSession) output(buf []byte) {
}
}
// 4. WriteTo kernel
nbytes := 0
npkts := 0
// 4. TxQueue
var msg ipv4.Message
for i := 0; i < s.dup+1; i++ {
if n, err := s.conn.WriteTo(ext, s.remote); err == nil {
nbytes += n
npkts++
} else {
s.notifyWriteError(err)
}
bts := xmitBuf.Get().([]byte)[:len(buf)]
copy(bts, buf)
msg.Buffers = [][]byte{bts}
msg.Addr = s.remote
s.txqueue = append(s.txqueue, msg)
}
for k := range ecc {
if n, err := s.conn.WriteTo(ecc[k], s.remote); err == nil {
nbytes += n
npkts++
} else {
s.notifyWriteError(err)
}
bts := xmitBuf.Get().([]byte)[:len(ecc[k])]
copy(bts, ecc[k])
msg.Buffers = [][]byte{bts}
msg.Addr = s.remote
s.txqueue = append(s.txqueue, msg)
}
atomic.AddUint64(&DefaultSnmp.OutPkts, uint64(npkts))
atomic.AddUint64(&DefaultSnmp.OutBytes, uint64(nbytes))
}
// kcp update, returns interval for next calling
@@ -535,6 +557,7 @@ func (s *UDPSession) update() (interval time.Duration) {
if s.kcp.WaitSnd() < waitsnd {
s.notifyWriteEvent()
}
s.uncork()
s.mu.Unlock()
return
}
@@ -556,10 +579,39 @@ func (s *UDPSession) notifyWriteEvent() {
}
}
func (s *UDPSession) notifyReadError(err error) {
s.socketReadErrorOnce.Do(func() {
s.socketReadError.Store(err)
close(s.chSocketReadError)
})
}
func (s *UDPSession) notifyWriteError(err error) {
select {
case s.chWriteError <- err:
default:
s.socketWriteErrorOnce.Do(func() {
s.socketWriteError.Store(err)
close(s.chSocketWriteError)
})
}
// packet input stage
func (s *UDPSession) packetInput(data []byte) {
dataValid := false
if s.block != nil {
s.block.Decrypt(data, data)
data = data[nonceSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
} else {
atomic.AddUint64(&DefaultSnmp.InCsumErrors, 1)
}
} else if s.block == nil {
dataValid = true
}
if dataValid {
s.kcpInput(data)
}
}
@@ -568,16 +620,16 @@ func (s *UDPSession) kcpInput(data []byte) {
if s.fecDecoder != nil {
if len(data) > fecHeaderSize { // must be larger than fec header size
f := s.fecDecoder.decodeBytes(data)
if f.flag == typeData || f.flag == typeFEC { // header check
if f.flag == typeFEC {
f := fecPacket(data)
if f.flag() == typeData || f.flag() == typeParity { // header check
if f.flag() == typeParity {
fecParityShards++
}
recovers := s.fecDecoder.decode(f)
s.mu.Lock()
waitsnd := s.kcp.WaitSnd()
if f.flag == typeData {
if f.flag() == typeData {
if ret := s.kcp.Input(data[fecHeaderSizePlus2:], true, s.ackNoDelay); ret != 0 {
kcpInErrors++
}
@@ -598,6 +650,8 @@ func (s *UDPSession) kcpInput(data []byte) {
} else {
fecErrs++
}
// recycle the recovers
xmitBuf.Put(r)
}
// to notify the readers to receive the data
@@ -608,6 +662,7 @@ func (s *UDPSession) kcpInput(data []byte) {
if s.kcp.WaitSnd() < waitsnd {
s.notifyWriteEvent()
}
s.uncork()
s.mu.Unlock()
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
@@ -627,6 +682,7 @@ func (s *UDPSession) kcpInput(data []byte) {
if s.kcp.WaitSnd() < waitsnd {
s.notifyWriteEvent()
}
s.uncork()
s.mu.Unlock()
}
@@ -644,50 +700,7 @@ func (s *UDPSession) kcpInput(data []byte) {
if fecRecovered > 0 {
atomic.AddUint64(&DefaultSnmp.FECRecovered, fecRecovered)
}
}
// the read loop for a client session
func (s *UDPSession) readLoop() {
buf := make([]byte, mtuLimit)
var src string
for {
if n, addr, err := s.conn.ReadFrom(buf); err == nil {
// make sure the packet is from the same source
if src == "" { // set source address
src = addr.String()
} else if addr.String() != src {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
continue
}
if n >= s.headerSize+IKCP_OVERHEAD {
data := buf[:n]
dataValid := false
if s.block != nil {
s.block.Decrypt(data, data)
data = data[nonceSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
} else {
atomic.AddUint64(&DefaultSnmp.InCsumErrors, 1)
}
} else if s.block == nil {
dataValid = true
}
if dataValid {
s.kcpInput(data)
}
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
}
} else {
s.chReadError <- err
return
}
}
}
type (
@@ -704,98 +717,91 @@ type (
chAccepts chan *UDPSession // Listen() backlog
chSessionClosed chan net.Addr // session close queue
headerSize int // the additional header to a KCP frame
die chan struct{} // notify the listener has closed
rd atomic.Value // read deadline for Accept()
wd atomic.Value
die chan struct{} // notify the listener has closed
dieOnce sync.Once
// socket error handling
socketReadError atomic.Value
chSocketReadError chan struct{}
socketReadErrorOnce sync.Once
rd atomic.Value // read deadline for Accept()
}
)
// monitor incoming data for all connections of server
func (l *Listener) monitor() {
// a cache for session object last used
var lastAddr string
var lastSession *UDPSession
buf := make([]byte, mtuLimit)
for {
if n, from, err := l.conn.ReadFrom(buf); err == nil {
if n >= l.headerSize+IKCP_OVERHEAD {
data := buf[:n]
dataValid := false
if l.block != nil {
l.block.Decrypt(data, data)
data = data[nonceSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
} else {
atomic.AddUint64(&DefaultSnmp.InCsumErrors, 1)
// packet input stage
func (l *Listener) packetInput(data []byte, addr net.Addr) {
dataValid := false
if l.block != nil {
l.block.Decrypt(data, data)
data = data[nonceSize:]
checksum := crc32.ChecksumIEEE(data[crcSize:])
if checksum == binary.LittleEndian.Uint32(data) {
data = data[crcSize:]
dataValid = true
} else {
atomic.AddUint64(&DefaultSnmp.InCsumErrors, 1)
}
} else if l.block == nil {
dataValid = true
}
if dataValid {
l.sessionLock.Lock()
s, ok := l.sessions[addr.String()]
l.sessionLock.Unlock()
if !ok { // new address:port
if len(l.chAccepts) < cap(l.chAccepts) { // do not let the new sessions overwhelm accept queue
var conv uint32
convValid := false
if l.fecDecoder != nil {
isfec := binary.LittleEndian.Uint16(data[4:])
if isfec == typeData {
conv = binary.LittleEndian.Uint32(data[fecHeaderSizePlus2:])
convValid = true
}
} else if l.block == nil {
dataValid = true
} else {
conv = binary.LittleEndian.Uint32(data)
convValid = true
}
if dataValid {
addr := from.String()
var s *UDPSession
var ok bool
// the packets received from an address always come in batch,
// cache the session for next packet, without querying map.
if addr == lastAddr {
s, ok = lastSession, true
} else {
l.sessionLock.Lock()
if s, ok = l.sessions[addr]; ok {
lastSession = s
lastAddr = addr
}
l.sessionLock.Unlock()
}
if !ok { // new session
if len(l.chAccepts) < cap(l.chAccepts) { // do not let the new sessions overwhelm accept queue
var conv uint32
convValid := false
if l.fecDecoder != nil {
isfec := binary.LittleEndian.Uint16(data[4:])
if isfec == typeData {
conv = binary.LittleEndian.Uint32(data[fecHeaderSizePlus2:])
convValid = true
}
} else {
conv = binary.LittleEndian.Uint32(data)
convValid = true
}
if convValid { // creates a new session only if the 'conv' field in kcp is accessible
s := newUDPSession(conv, l.dataShards, l.parityShards, l, l.conn, from, l.block)
s.kcpInput(data)
l.sessionLock.Lock()
l.sessions[addr] = s
l.sessionLock.Unlock()
l.chAccepts <- s
}
}
} else {
s.kcpInput(data)
}
if convValid { // creates a new session only if the 'conv' field in kcp is accessible
s := newUDPSession(conv, l.dataShards, l.parityShards, l, l.conn, addr, l.block)
s.kcpInput(data)
l.sessionLock.Lock()
l.sessions[addr.String()] = s
l.sessionLock.Unlock()
l.chAccepts <- s
}
} else {
atomic.AddUint64(&DefaultSnmp.InErrs, 1)
}
} else {
return
s.kcpInput(data)
}
}
}
func (l *Listener) notifyReadError(err error) {
l.socketReadErrorOnce.Do(func() {
l.socketReadError.Store(err)
close(l.chSocketReadError)
// propagate read error to all sessions
l.sessionLock.Lock()
for _, s := range l.sessions {
s.notifyReadError(err)
}
l.sessionLock.Unlock()
})
}
// SetReadBuffer sets the socket read buffer for the Listener
func (l *Listener) SetReadBuffer(bytes int) error {
if nc, ok := l.conn.(setReadBuffer); ok {
return nc.SetReadBuffer(bytes)
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// SetWriteBuffer sets the socket write buffer for the Listener
@@ -803,18 +809,25 @@ func (l *Listener) SetWriteBuffer(bytes int) error {
if nc, ok := l.conn.(setWriteBuffer); ok {
return nc.SetWriteBuffer(bytes)
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// SetDSCP sets the 6bit DSCP field of IP header
// SetDSCP sets the 6bit DSCP field in IPv4 header, or 8bit Traffic Class in IPv6 header.
func (l *Listener) SetDSCP(dscp int) error {
if nc, ok := l.conn.(net.Conn); ok {
if err := ipv4.NewConn(nc).SetTOS(dscp << 2); err != nil {
return ipv6.NewConn(nc).SetTrafficClass(dscp)
var succeed bool
if err := ipv4.NewConn(nc).SetTOS(dscp << 2); err == nil {
succeed = true
}
if err := ipv6.NewConn(nc).SetTrafficClass(dscp); err == nil {
succeed = true
}
if succeed {
return nil
}
return nil
}
return errors.New(errInvalidOperation)
return errInvalidOperation
}
// Accept implements the Accept method in the Listener interface; it waits for the next call and returns a generic Conn.
@@ -831,11 +844,13 @@ func (l *Listener) AcceptKCP() (*UDPSession, error) {
select {
case <-timeout:
return nil, &errTimeout{}
return nil, errors.WithStack(errTimeout)
case c := <-l.chAccepts:
return c, nil
case <-l.chSocketReadError:
return nil, l.socketReadError.Load().(error)
case <-l.die:
return nil, errors.New(errBrokenPipe)
return nil, errors.WithStack(io.ErrClosedPipe)
}
}
@@ -853,15 +868,21 @@ func (l *Listener) SetReadDeadline(t time.Time) error {
}
// SetWriteDeadline implements the Conn SetWriteDeadline method.
func (l *Listener) SetWriteDeadline(t time.Time) error {
l.wd.Store(t)
return nil
}
func (l *Listener) SetWriteDeadline(t time.Time) error { return errInvalidOperation }
// Close stops listening on the UDP address. Already Accepted connections are not closed.
// Close stops listening on the UDP address, and closes the socket
func (l *Listener) Close() error {
close(l.die)
return l.conn.Close()
var once bool
l.dieOnce.Do(func() {
close(l.die)
once = true
})
if once {
return l.conn.Close()
} else {
return errors.WithStack(io.ErrClosedPipe)
}
}
// closeSession notify the listener that a session has closed
@@ -881,16 +902,21 @@ func (l *Listener) Addr() net.Addr { return l.conn.LocalAddr() }
// Listen listens for incoming KCP packets addressed to the local address laddr on the network "udp",
func Listen(laddr string) (net.Listener, error) { return ListenWithOptions(laddr, nil, 0, 0) }
// ListenWithOptions listens for incoming KCP packets addressed to the local address laddr on the network "udp" with packet encryption,
// dataShards, parityShards defines Reed-Solomon Erasure Coding parameters
// ListenWithOptions listens for incoming KCP packets addressed to the local address laddr on the network "udp" with packet encryption.
//
// 'block' is the block encryption algorithm to encrypt packets.
//
// 'dataShards', 'parityShards' specifiy how many parity packets will be generated following the data packets.
//
// Check https://github.com/klauspost/reedsolomon for details
func ListenWithOptions(laddr string, block BlockCrypt, dataShards, parityShards int) (*Listener, error) {
udpaddr, err := net.ResolveUDPAddr("udp", laddr)
if err != nil {
return nil, errors.Wrap(err, "net.ResolveUDPAddr")
return nil, errors.WithStack(err)
}
conn, err := net.ListenUDP("udp", udpaddr)
if err != nil {
return nil, errors.Wrap(err, "net.ListenUDP")
return nil, errors.WithStack(err)
}
return ServeConn(block, dataShards, parityShards, conn)
@@ -908,6 +934,7 @@ func ServeConn(block BlockCrypt, dataShards, parityShards int, conn net.PacketCo
l.parityShards = parityShards
l.block = block
l.fecDecoder = newFECDecoder(rxFECMulti*(dataShards+parityShards), dataShards, parityShards)
l.chSocketReadError = make(chan struct{})
// calculate header size
if l.block != nil {
@@ -921,15 +948,21 @@ func ServeConn(block BlockCrypt, dataShards, parityShards int, conn net.PacketCo
return l, nil
}
// Dial connects to the remote address "raddr" on the network "udp"
// Dial connects to the remote address "raddr" on the network "udp" without encryption and FEC
func Dial(raddr string) (net.Conn, error) { return DialWithOptions(raddr, nil, 0, 0) }
// DialWithOptions connects to the remote address "raddr" on the network "udp" with packet encryption
//
// 'block' is the block encryption algorithm to encrypt packets.
//
// 'dataShards', 'parityShards' specifiy how many parity packets will be generated following the data packets.
//
// Check https://github.com/klauspost/reedsolomon for details
func DialWithOptions(raddr string, block BlockCrypt, dataShards, parityShards int) (*UDPSession, error) {
// network type detection
udpaddr, err := net.ResolveUDPAddr("udp", raddr)
if err != nil {
return nil, errors.Wrap(err, "net.ResolveUDPAddr")
return nil, errors.WithStack(err)
}
network := "udp4"
if udpaddr.IP.To4() == nil {
@@ -938,30 +971,33 @@ func DialWithOptions(raddr string, block BlockCrypt, dataShards, parityShards in
conn, err := net.ListenUDP(network, nil)
if err != nil {
return nil, errors.Wrap(err, "net.DialUDP")
return nil, errors.WithStack(err)
}
return NewConn(raddr, block, dataShards, parityShards, conn)
}
// NewConn3 establishes a session and talks KCP protocol over a packet connection.
func NewConn3(convid uint32, raddr net.Addr, block BlockCrypt, dataShards, parityShards int, conn net.PacketConn) (*UDPSession, error) {
return newUDPSession(convid, dataShards, parityShards, nil, conn, raddr, block), nil
}
// NewConn2 establishes a session and talks KCP protocol over a packet connection.
func NewConn2(raddr net.Addr, block BlockCrypt, dataShards, parityShards int, conn net.PacketConn) (*UDPSession, error) {
var convid uint32
binary.Read(rand.Reader, binary.LittleEndian, &convid)
return NewConn3(convid, raddr, block, dataShards, parityShards, conn)
}
// NewConn establishes a session and talks KCP protocol over a packet connection.
func NewConn(raddr string, block BlockCrypt, dataShards, parityShards int, conn net.PacketConn) (*UDPSession, error) {
udpaddr, err := net.ResolveUDPAddr("udp", raddr)
if err != nil {
return nil, errors.Wrap(err, "net.ResolveUDPAddr")
return nil, errors.WithStack(err)
}
var convid uint32
binary.Read(rand.Reader, binary.LittleEndian, &convid)
return newUDPSession(convid, dataShards, parityShards, nil, conn, udpaddr, block), nil
return NewConn2(udpaddr, block, dataShards, parityShards, conn)
}
// monotonic reference time point
var refTime time.Time = time.Now()
// currentMs returns current elasped monotonic milliseconds since program startup
func currentMs() uint32 { return uint32(time.Now().Sub(refTime) / time.Millisecond) }
func NewConnEx(convid uint32, connected bool, raddr string, block BlockCrypt, dataShards, parityShards int, conn *net.UDPConn) (*UDPSession, error) {
udpaddr, err := net.ResolveUDPAddr("udp", raddr)
if err != nil {

25
vendor/github.com/fatedier/kcp-go/tx.go generated vendored Normal file
View File

@@ -0,0 +1,25 @@
package kcp
import (
"sync/atomic"
"github.com/pkg/errors"
"golang.org/x/net/ipv4"
)
func (s *UDPSession) defaultTx(txqueue []ipv4.Message) {
nbytes := 0
npkts := 0
for k := range txqueue {
if n, err := s.conn.WriteTo(txqueue[k].Buffers[0], txqueue[k].Addr); err == nil {
nbytes += n
npkts++
xmitBuf.Put(txqueue[k].Buffers[0])
} else {
s.notifyWriteError(errors.WithStack(err))
break
}
}
atomic.AddUint64(&DefaultSnmp.OutPkts, uint64(npkts))
atomic.AddUint64(&DefaultSnmp.OutBytes, uint64(nbytes))
}

11
vendor/github.com/fatedier/kcp-go/tx_generic.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
// +build !linux
package kcp
import (
"golang.org/x/net/ipv4"
)
func (s *UDPSession) tx(txqueue []ipv4.Message) {
s.defaultTx(txqueue)
}

52
vendor/github.com/fatedier/kcp-go/tx_linux.go generated vendored Normal file
View File

@@ -0,0 +1,52 @@
// +build linux
package kcp
import (
"net"
"os"
"sync/atomic"
"github.com/pkg/errors"
"golang.org/x/net/ipv4"
)
func (s *UDPSession) tx(txqueue []ipv4.Message) {
// default version
if s.xconn == nil || s.xconnWriteError != nil {
s.defaultTx(txqueue)
return
}
// x/net version
nbytes := 0
npkts := 0
for len(txqueue) > 0 {
if n, err := s.xconn.WriteBatch(txqueue, 0); err == nil {
for k := range txqueue[:n] {
nbytes += len(txqueue[k].Buffers[0])
xmitBuf.Put(txqueue[k].Buffers[0])
}
npkts += n
txqueue = txqueue[n:]
} else {
// compatibility issue:
// for linux kernel<=2.6.32, support for sendmmsg is not available
// an error of type os.SyscallError will be returned
if operr, ok := err.(*net.OpError); ok {
if se, ok := operr.Err.(*os.SyscallError); ok {
if se.Syscall == "sendmmsg" {
s.xconnWriteError = se
s.defaultTx(txqueue)
return
}
}
}
s.notifyWriteError(errors.WithStack(err))
break
}
}
atomic.AddUint64(&DefaultSnmp.OutPkts, uint64(npkts))
atomic.AddUint64(&DefaultSnmp.OutBytes, uint64(nbytes))
}

View File

@@ -76,10 +76,10 @@ func (h *updateHeap) wakeup() {
}
func (h *updateHeap) updateTask() {
var timer <-chan time.Time
timer := time.NewTimer(0)
for {
select {
case <-timer:
case <-timer.C:
case <-h.chWakeUp:
}
@@ -87,7 +87,7 @@ func (h *updateHeap) updateTask() {
hlen := h.Len()
for i := 0; i < hlen; i++ {
entry := &h.entries[0]
if time.Now().After(entry.ts) {
if !time.Now().Before(entry.ts) {
interval := entry.s.update()
entry.ts = time.Now().Add(interval)
heap.Fix(h, 0)
@@ -97,7 +97,7 @@ func (h *updateHeap) updateTask() {
}
if hlen > 0 {
timer = time.After(h.entries[0].ts.Sub(time.Now()))
timer.Reset(h.entries[0].ts.Sub(time.Now()))
}
h.mu.Unlock()
}