using glide

This commit is contained in:
fatedier
2017-11-01 16:21:57 +08:00
parent ad858a0d32
commit 0f1005ff61
1073 changed files with 293160 additions and 171 deletions

View File

@@ -0,0 +1,45 @@
# Examples
This folder contains usage examples of the Reed-Solomon encoder.
# Simple Encoder/Decoder
Shows basic use of the encoder, and will encode a single file into a number of
data and parity shards. This is meant as an example and is not meant for production use
since there is a number of shotcomings noted below.
To build an executable use:
```bash
go build simple-decoder.go
go build simple-encoder.go
```
# Streamin API examples
There are streaming examples of the same functionality, which streams data instead of keeping it in memory.
To build the executables use:
```bash
go build stream-decoder.go
go build stream-encoder.go
```
## Shortcomings
* If the file size of the input isn't diviable by the number of data shards
the output will contain extra zeroes
* If the shard numbers isn't the same for the decoder as in the
encoder, invalid output will be generated.
* If values have changed in a shard, it cannot be reconstructed.
* If two shards have been swapped, reconstruction will always fail.
You need to supply the shards in the same order as they were given to you.
The solution for this is to save a metadata file containing:
* File size.
* The number of data/parity shards.
* HASH of each shard.
* Order of the shards.
If you save these properties, you should abe able to detect file corruption in a shard and be able to reconstruct your data if you have the needed number of shards left.

View File

@@ -0,0 +1,125 @@
//+build ignore
// Copyright 2015, Klaus Post, see LICENSE for details.
//
// Simple decoder example.
//
// The decoder reverses the process of "simple-encoder.go"
//
// To build an executable use:
//
// go build simple-decoder.go
//
// Simple Encoder/Decoder Shortcomings:
// * If the file size of the input isn't diviable by the number of data shards
// the output will contain extra zeroes
//
// * If the shard numbers isn't the same for the decoder as in the
// encoder, invalid output will be generated.
//
// * If values have changed in a shard, it cannot be reconstructed.
//
// * If two shards have been swapped, reconstruction will always fail.
// You need to supply the shards in the same order as they were given to you.
//
// The solution for this is to save a metadata file containing:
//
// * File size.
// * The number of data/parity shards.
// * HASH of each shard.
// * Order of the shards.
//
// If you save these properties, you should abe able to detect file corruption
// in a shard and be able to reconstruct your data if you have the needed number of shards left.
package main
import (
"flag"
"fmt"
"io/ioutil"
"os"
"github.com/klauspost/reedsolomon"
)
var dataShards = flag.Int("data", 4, "Number of shards to split the data into")
var parShards = flag.Int("par", 2, "Number of parity shards")
var outFile = flag.String("out", "", "Alternative output path/file")
func init() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fmt.Fprintf(os.Stderr, " simple-decoder [-flags] basefile.ext\nDo not add the number to the filename.\n")
fmt.Fprintf(os.Stderr, "Valid flags:\n")
flag.PrintDefaults()
}
}
func main() {
// Parse flags
flag.Parse()
args := flag.Args()
if len(args) != 1 {
fmt.Fprintf(os.Stderr, "Error: No filenames given\n")
flag.Usage()
os.Exit(1)
}
fname := args[0]
// Create matrix
enc, err := reedsolomon.New(*dataShards, *parShards)
checkErr(err)
// Create shards and load the data.
shards := make([][]byte, *dataShards+*parShards)
for i := range shards {
infn := fmt.Sprintf("%s.%d", fname, i)
fmt.Println("Opening", infn)
shards[i], err = ioutil.ReadFile(infn)
if err != nil {
fmt.Println("Error reading file", err)
shards[i] = nil
}
}
// Verify the shards
ok, err := enc.Verify(shards)
if ok {
fmt.Println("No reconstruction needed")
} else {
fmt.Println("Verification failed. Reconstructing data")
err = enc.Reconstruct(shards)
if err != nil {
fmt.Println("Reconstruct failed -", err)
os.Exit(1)
}
ok, err = enc.Verify(shards)
if !ok {
fmt.Println("Verification failed after reconstruction, data likely corrupted.")
os.Exit(1)
}
checkErr(err)
}
// Join the shards and write them
outfn := *outFile
if outfn == "" {
outfn = fname
}
fmt.Println("Writing data to", outfn)
f, err := os.Create(outfn)
checkErr(err)
// We don't know the exact filesize.
err = enc.Join(f, shards, len(shards[0])**dataShards)
checkErr(err)
}
func checkErr(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %s", err.Error())
os.Exit(2)
}
}

View File

@@ -0,0 +1,112 @@
//+build ignore
// Copyright 2015, Klaus Post, see LICENSE for details.
//
// Simple encoder example
//
// The encoder encodes a simgle file into a number of shards
// To reverse the process see "simpledecoder.go"
//
// To build an executable use:
//
// go build simple-decoder.go
//
// Simple Encoder/Decoder Shortcomings:
// * If the file size of the input isn't diviable by the number of data shards
// the output will contain extra zeroes
//
// * If the shard numbers isn't the same for the decoder as in the
// encoder, invalid output will be generated.
//
// * If values have changed in a shard, it cannot be reconstructed.
//
// * If two shards have been swapped, reconstruction will always fail.
// You need to supply the shards in the same order as they were given to you.
//
// The solution for this is to save a metadata file containing:
//
// * File size.
// * The number of data/parity shards.
// * HASH of each shard.
// * Order of the shards.
//
// If you save these properties, you should abe able to detect file corruption
// in a shard and be able to reconstruct your data if you have the needed number of shards left.
package main
import (
"flag"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"github.com/klauspost/reedsolomon"
)
var dataShards = flag.Int("data", 4, "Number of shards to split the data into, must be below 257.")
var parShards = flag.Int("par", 2, "Number of parity shards")
var outDir = flag.String("out", "", "Alternative output directory")
func init() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fmt.Fprintf(os.Stderr, " simple-encoder [-flags] filename.ext\n\n")
fmt.Fprintf(os.Stderr, "Valid flags:\n")
flag.PrintDefaults()
}
}
func main() {
// Parse command line parameters.
flag.Parse()
args := flag.Args()
if len(args) != 1 {
fmt.Fprintf(os.Stderr, "Error: No input filename given\n")
flag.Usage()
os.Exit(1)
}
if *dataShards > 257 {
fmt.Fprintf(os.Stderr, "Error: Too many data shards\n")
os.Exit(1)
}
fname := args[0]
// Create encoding matrix.
enc, err := reedsolomon.New(*dataShards, *parShards)
checkErr(err)
fmt.Println("Opening", fname)
b, err := ioutil.ReadFile(fname)
checkErr(err)
// Split the file into equally sized shards.
shards, err := enc.Split(b)
checkErr(err)
fmt.Printf("File split into %d data+parity shards with %d bytes/shard.\n", len(shards), len(shards[0]))
// Encode parity
err = enc.Encode(shards)
checkErr(err)
// Write out the resulting files.
dir, file := filepath.Split(fname)
if *outDir != "" {
dir = *outDir
}
for i, shard := range shards {
outfn := fmt.Sprintf("%s.%d", file, i)
fmt.Println("Writing to", outfn)
err = ioutil.WriteFile(filepath.Join(dir, outfn), shard, os.ModePerm)
checkErr(err)
}
}
func checkErr(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %s", err.Error())
os.Exit(2)
}
}

View File

@@ -0,0 +1,167 @@
//+build ignore
// Copyright 2015, Klaus Post, see LICENSE for details.
//
// Stream decoder example.
//
// The decoder reverses the process of "stream-encoder.go"
//
// To build an executable use:
//
// go build stream-decoder.go
//
// Simple Encoder/Decoder Shortcomings:
// * If the file size of the input isn't dividable by the number of data shards
// the output will contain extra zeroes
//
// * If the shard numbers isn't the same for the decoder as in the
// encoder, invalid output will be generated.
//
// * If values have changed in a shard, it cannot be reconstructed.
//
// * If two shards have been swapped, reconstruction will always fail.
// You need to supply the shards in the same order as they were given to you.
//
// The solution for this is to save a metadata file containing:
//
// * File size.
// * The number of data/parity shards.
// * HASH of each shard.
// * Order of the shards.
//
// If you save these properties, you should abe able to detect file corruption
// in a shard and be able to reconstruct your data if you have the needed number of shards left.
package main
import (
"flag"
"fmt"
"io"
"os"
"path/filepath"
"github.com/klauspost/reedsolomon"
)
var dataShards = flag.Int("data", 4, "Number of shards to split the data into")
var parShards = flag.Int("par", 2, "Number of parity shards")
var outFile = flag.String("out", "", "Alternative output path/file")
func init() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fmt.Fprintf(os.Stderr, " %s [-flags] basefile.ext\nDo not add the number to the filename.\n", os.Args[0])
fmt.Fprintf(os.Stderr, "Valid flags:\n")
flag.PrintDefaults()
}
}
func main() {
// Parse flags
flag.Parse()
args := flag.Args()
if len(args) != 1 {
fmt.Fprintf(os.Stderr, "Error: No filenames given\n")
flag.Usage()
os.Exit(1)
}
fname := args[0]
// Create matrix
enc, err := reedsolomon.NewStream(*dataShards, *parShards)
checkErr(err)
// Open the inputs
shards, size, err := openInput(*dataShards, *parShards, fname)
checkErr(err)
// Verify the shards
ok, err := enc.Verify(shards)
if ok {
fmt.Println("No reconstruction needed")
} else {
fmt.Println("Verification failed. Reconstructing data")
shards, size, err = openInput(*dataShards, *parShards, fname)
checkErr(err)
// Create out destination writers
out := make([]io.Writer, len(shards))
for i := range out {
if shards[i] == nil {
dir, _ := filepath.Split(fname)
outfn := fmt.Sprintf("%s.%d", fname, i)
fmt.Println("Creating", outfn)
out[i], err = os.Create(filepath.Join(dir, outfn))
checkErr(err)
}
}
err = enc.Reconstruct(shards, out)
if err != nil {
fmt.Println("Reconstruct failed -", err)
os.Exit(1)
}
// Close output.
for i := range out {
if out[i] != nil {
err := out[i].(*os.File).Close()
checkErr(err)
}
}
shards, size, err = openInput(*dataShards, *parShards, fname)
ok, err = enc.Verify(shards)
if !ok {
fmt.Println("Verification failed after reconstruction, data likely corrupted:", err)
os.Exit(1)
}
checkErr(err)
}
// Join the shards and write them
outfn := *outFile
if outfn == "" {
outfn = fname
}
fmt.Println("Writing data to", outfn)
f, err := os.Create(outfn)
checkErr(err)
shards, size, err = openInput(*dataShards, *parShards, fname)
checkErr(err)
// We don't know the exact filesize.
err = enc.Join(f, shards, int64(*dataShards)*size)
checkErr(err)
}
func openInput(dataShards, parShards int, fname string) (r []io.Reader, size int64, err error) {
// Create shards and load the data.
shards := make([]io.Reader, dataShards+parShards)
for i := range shards {
infn := fmt.Sprintf("%s.%d", fname, i)
fmt.Println("Opening", infn)
f, err := os.Open(infn)
if err != nil {
fmt.Println("Error reading file", err)
shards[i] = nil
continue
} else {
shards[i] = f
}
stat, err := f.Stat()
checkErr(err)
if stat.Size() > 0 {
size = stat.Size()
} else {
shards[i] = nil
}
}
return shards, size, nil
}
func checkErr(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %s", err.Error())
os.Exit(2)
}
}

View File

@@ -0,0 +1,142 @@
//+build ignore
// Copyright 2015, Klaus Post, see LICENSE for details.
//
// Simple stream encoder example
//
// The encoder encodes a single file into a number of shards
// To reverse the process see "stream-decoder.go"
//
// To build an executable use:
//
// go build stream-encoder.go
//
// Simple Encoder/Decoder Shortcomings:
// * If the file size of the input isn't dividable by the number of data shards
// the output will contain extra zeroes
//
// * If the shard numbers isn't the same for the decoder as in the
// encoder, invalid output will be generated.
//
// * If values have changed in a shard, it cannot be reconstructed.
//
// * If two shards have been swapped, reconstruction will always fail.
// You need to supply the shards in the same order as they were given to you.
//
// The solution for this is to save a metadata file containing:
//
// * File size.
// * The number of data/parity shards.
// * HASH of each shard.
// * Order of the shards.
//
// If you save these properties, you should abe able to detect file corruption
// in a shard and be able to reconstruct your data if you have the needed number of shards left.
package main
import (
"flag"
"fmt"
"os"
"path/filepath"
"io"
"github.com/klauspost/reedsolomon"
)
var dataShards = flag.Int("data", 4, "Number of shards to split the data into, must be below 257.")
var parShards = flag.Int("par", 2, "Number of parity shards")
var outDir = flag.String("out", "", "Alternative output directory")
func init() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fmt.Fprintf(os.Stderr, " %s [-flags] filename.ext\n\n", os.Args[0])
fmt.Fprintf(os.Stderr, "Valid flags:\n")
flag.PrintDefaults()
}
}
func main() {
// Parse command line parameters.
flag.Parse()
args := flag.Args()
if len(args) != 1 {
fmt.Fprintf(os.Stderr, "Error: No input filename given\n")
flag.Usage()
os.Exit(1)
}
if *dataShards > 257 {
fmt.Fprintf(os.Stderr, "Error: Too many data shards\n")
os.Exit(1)
}
fname := args[0]
// Create encoding matrix.
enc, err := reedsolomon.NewStream(*dataShards, *parShards)
checkErr(err)
fmt.Println("Opening", fname)
f, err := os.Open(fname)
checkErr(err)
instat, err := f.Stat()
checkErr(err)
shards := *dataShards + *parShards
out := make([]*os.File, shards)
// Create the resulting files.
dir, file := filepath.Split(fname)
if *outDir != "" {
dir = *outDir
}
for i := range out {
outfn := fmt.Sprintf("%s.%d", file, i)
fmt.Println("Creating", outfn)
out[i], err = os.Create(filepath.Join(dir, outfn))
checkErr(err)
}
// Split into files.
data := make([]io.Writer, *dataShards)
for i := range data {
data[i] = out[i]
}
// Do the split
err = enc.Split(f, data, instat.Size())
checkErr(err)
// Close and re-open the files.
input := make([]io.Reader, *dataShards)
for i := range data {
out[i].Close()
f, err := os.Open(out[i].Name())
checkErr(err)
input[i] = f
defer f.Close()
}
// Create parity output writers
parity := make([]io.Writer, *parShards)
for i := range parity {
parity[i] = out[*dataShards+i]
defer out[*dataShards+i].Close()
}
// Encode parity
err = enc.Encode(input, parity)
checkErr(err)
fmt.Printf("File split into %d data + %d parity shards.\n", *dataShards, *parShards)
}
func checkErr(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %s", err.Error())
os.Exit(2)
}
}

View File

@@ -0,0 +1,209 @@
package reedsolomon_test
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"log"
"math/rand"
"github.com/klauspost/reedsolomon"
)
func fillRandom(p []byte) {
for i := 0; i < len(p); i += 7 {
val := rand.Int63()
for j := 0; i+j < len(p) && j < 7; j++ {
p[i+j] = byte(val)
val >>= 8
}
}
}
// Simple example of how to use all functions of the Encoder.
// Note that all error checks have been removed to keep it short.
func ExampleEncoder() {
// Create some sample data
var data = make([]byte, 250000)
fillRandom(data)
// Create an encoder with 17 data and 3 parity slices.
enc, _ := reedsolomon.New(17, 3)
// Split the data into shards
shards, _ := enc.Split(data)
// Encode the parity set
_ = enc.Encode(shards)
// Verify the parity set
ok, _ := enc.Verify(shards)
if ok {
fmt.Println("ok")
}
// Delete two shards
shards[10], shards[11] = nil, nil
// Reconstruct the shards
_ = enc.Reconstruct(shards)
// Verify the data set
ok, _ = enc.Verify(shards)
if ok {
fmt.Println("ok")
}
// Output: ok
// ok
}
// This demonstrates that shards can be arbitrary sliced and
// merged and still remain valid.
func ExampleEncoder_slicing() {
// Create some sample data
var data = make([]byte, 250000)
fillRandom(data)
// Create 5 data slices of 50000 elements each
enc, _ := reedsolomon.New(5, 3)
shards, _ := enc.Split(data)
err := enc.Encode(shards)
if err != nil {
panic(err)
}
// Check that it verifies
ok, err := enc.Verify(shards)
if ok && err == nil {
fmt.Println("encode ok")
}
// Split the data set of 50000 elements into two of 25000
splitA := make([][]byte, 8)
splitB := make([][]byte, 8)
// Merge into a 100000 element set
merged := make([][]byte, 8)
// Split/merge the shards
for i := range shards {
splitA[i] = shards[i][:25000]
splitB[i] = shards[i][25000:]
// Concencate it to itself
merged[i] = append(make([]byte, 0, len(shards[i])*2), shards[i]...)
merged[i] = append(merged[i], shards[i]...)
}
// Each part should still verify as ok.
ok, err = enc.Verify(shards)
if ok && err == nil {
fmt.Println("splitA ok")
}
ok, err = enc.Verify(splitB)
if ok && err == nil {
fmt.Println("splitB ok")
}
ok, err = enc.Verify(merged)
if ok && err == nil {
fmt.Println("merge ok")
}
// Output: encode ok
// splitA ok
// splitB ok
// merge ok
}
// This demonstrates that shards can xor'ed and
// still remain a valid set.
//
// The xor value must be the same for element 'n' in each shard,
// except if you xor with a similar sized encoded shard set.
func ExampleEncoder_xor() {
// Create some sample data
var data = make([]byte, 25000)
fillRandom(data)
// Create 5 data slices of 5000 elements each
enc, _ := reedsolomon.New(5, 3)
shards, _ := enc.Split(data)
err := enc.Encode(shards)
if err != nil {
panic(err)
}
// Check that it verifies
ok, err := enc.Verify(shards)
if !ok || err != nil {
fmt.Println("falied initial verify", err)
}
// Create an xor'ed set
xored := make([][]byte, 8)
// We xor by the index, so you can see that the xor can change,
// It should however be constant vertically through your slices.
for i := range shards {
xored[i] = make([]byte, len(shards[i]))
for j := range xored[i] {
xored[i][j] = shards[i][j] ^ byte(j&0xff)
}
}
// Each part should still verify as ok.
ok, err = enc.Verify(xored)
if ok && err == nil {
fmt.Println("verified ok after xor")
}
// Output: verified ok after xor
}
// This will show a simple stream encoder where we encode from
// a []io.Reader which contain a reader for each shard.
//
// Input and output can be exchanged with files, network streams
// or what may suit your needs.
func ExampleStreamEncoder() {
dataShards := 5
parityShards := 2
// Create a StreamEncoder with the number of data and
// parity shards.
rs, err := reedsolomon.NewStream(dataShards, parityShards)
if err != nil {
log.Fatal(err)
}
shardSize := 50000
// Create input data shards.
input := make([][]byte, dataShards)
for s := range input {
input[s] = make([]byte, shardSize)
fillRandom(input[s])
}
// Convert our buffers to io.Readers
readers := make([]io.Reader, dataShards)
for i := range readers {
readers[i] = io.Reader(bytes.NewBuffer(input[i]))
}
// Create our output io.Writers
out := make([]io.Writer, parityShards)
for i := range out {
out[i] = ioutil.Discard
}
// Encode from input to output.
err = rs.Encode(readers, out)
if err != nil {
log.Fatal(err)
}
fmt.Println("ok")
// OUTPUT: ok
}

155
vendor/github.com/klauspost/reedsolomon/galois_test.go generated vendored Normal file
View File

@@ -0,0 +1,155 @@
/**
* Unit tests for Galois
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc.
*/
package reedsolomon
import (
"bytes"
"testing"
)
func TestAssociativity(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
for j := 0; j < 256; j++ {
b := byte(j)
for k := 0; k < 256; k++ {
c := byte(k)
x := galAdd(a, galAdd(b, c))
y := galAdd(galAdd(a, b), c)
if x != y {
t.Fatal("add does not match:", x, "!=", y)
}
x = galMultiply(a, galMultiply(b, c))
y = galMultiply(galMultiply(a, b), c)
if x != y {
t.Fatal("multiply does not match:", x, "!=", y)
}
}
}
}
}
func TestIdentity(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
b := galAdd(a, 0)
if a != b {
t.Fatal("Add zero should yield same result", a, "!=", b)
}
b = galMultiply(a, 1)
if a != b {
t.Fatal("Mul by one should yield same result", a, "!=", b)
}
}
}
func TestInverse(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
b := galSub(0, a)
c := galAdd(a, b)
if c != 0 {
t.Fatal("inverse sub/add", c, "!=", 0)
}
if a != 0 {
b = galDivide(1, a)
c = galMultiply(a, b)
if c != 1 {
t.Fatal("inverse div/mul", c, "!=", 1)
}
}
}
}
func TestCommutativity(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
for j := 0; j < 256; j++ {
b := byte(j)
x := galAdd(a, b)
y := galAdd(b, a)
if x != y {
t.Fatal(x, "!= ", y)
}
x = galMultiply(a, b)
y = galMultiply(b, a)
if x != y {
t.Fatal(x, "!= ", y)
}
}
}
}
func TestDistributivity(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
for j := 0; j < 256; j++ {
b := byte(j)
for k := 0; k < 256; k++ {
c := byte(k)
x := galMultiply(a, galAdd(b, c))
y := galAdd(galMultiply(a, b), galMultiply(a, c))
if x != y {
t.Fatal(x, "!= ", y)
}
}
}
}
}
func TestExp(t *testing.T) {
for i := 0; i < 256; i++ {
a := byte(i)
power := byte(1)
for j := 0; j < 256; j++ {
x := galExp(a, j)
if x != power {
t.Fatal(x, "!=", power)
}
power = galMultiply(power, a)
}
}
}
func TestGalois(t *testing.T) {
// These values were copied output of the Python code.
if galMultiply(3, 4) != 12 {
t.Fatal("galMultiply(3, 4) != 12")
}
if galMultiply(7, 7) != 21 {
t.Fatal("galMultiply(7, 7) != 21")
}
if galMultiply(23, 45) != 41 {
t.Fatal("galMultiply(23, 45) != 41")
}
// Test slices (>16 entries to test assembler)
in := []byte{0, 1, 2, 3, 4, 5, 6, 10, 50, 100, 150, 174, 201, 255, 99, 32, 67, 85}
out := make([]byte, len(in))
galMulSlice(25, in, out, false, false)
expect := []byte{0x0, 0x19, 0x32, 0x2b, 0x64, 0x7d, 0x56, 0xfa, 0xb8, 0x6d, 0xc7, 0x85, 0xc3, 0x1f, 0x22, 0x7, 0x25, 0xfe}
if 0 != bytes.Compare(out, expect) {
t.Errorf("got %#v, expected %#v", out, expect)
}
galMulSlice(177, in, out, false, false)
expect = []byte{0x0, 0xb1, 0x7f, 0xce, 0xfe, 0x4f, 0x81, 0x9e, 0x3, 0x6, 0xe8, 0x75, 0xbd, 0x40, 0x36, 0xa3, 0x95, 0xcb}
if 0 != bytes.Compare(out, expect) {
t.Errorf("got %#v, expected %#v", out, expect)
}
if galExp(2, 2) != 4 {
t.Fatal("galExp(2, 2) != 4")
}
if galExp(5, 20) != 235 {
t.Fatal("galExp(5, 20) != 235")
}
if galExp(13, 7) != 43 {
t.Fatal("galExp(13, 7) != 43")
}
}

View File

@@ -0,0 +1,125 @@
/**
* Unit tests for inversion tree.
*
* Copyright 2016, Peter Collins
*/
package reedsolomon
import (
"testing"
)
func TestNewInversionTree(t *testing.T) {
tree := newInversionTree(3, 2)
children := len(tree.root.children)
if children != 5 {
t.Fatal("Root node children list length", children, "!=", 5)
}
str := tree.root.matrix.String()
expect := "[[1, 0, 0], [0, 1, 0], [0, 0, 1]]"
if str != expect {
t.Fatal(str, "!=", expect)
}
}
func TestGetInvertedMatrix(t *testing.T) {
tree := newInversionTree(3, 2)
matrix := tree.GetInvertedMatrix([]int{})
str := matrix.String()
expect := "[[1, 0, 0], [0, 1, 0], [0, 0, 1]]"
if str != expect {
t.Fatal(str, "!=", expect)
}
matrix = tree.GetInvertedMatrix([]int{1})
if matrix != nil {
t.Fatal(matrix, "!= nil")
}
matrix = tree.GetInvertedMatrix([]int{1, 2})
if matrix != nil {
t.Fatal(matrix, "!= nil")
}
matrix, err := newMatrix(3, 3)
if err != nil {
t.Fatalf("Failed initializing new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{1}, matrix, 5)
if err != nil {
t.Fatalf("Failed inserting new Matrix : %s", err)
}
cachedMatrix := tree.GetInvertedMatrix([]int{1})
if cachedMatrix == nil {
t.Fatal(cachedMatrix, "== nil")
}
if matrix.String() != cachedMatrix.String() {
t.Fatal(matrix.String(), "!=", cachedMatrix.String())
}
}
func TestInsertInvertedMatrix(t *testing.T) {
tree := newInversionTree(3, 2)
matrix, err := newMatrix(3, 3)
if err != nil {
t.Fatalf("Failed initializing new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{1}, matrix, 5)
if err != nil {
t.Fatalf("Failed inserting new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{}, matrix, 5)
if err == nil {
t.Fatal("Should have failed inserting the root node matrix", matrix)
}
matrix, err = newMatrix(3, 2)
if err != nil {
t.Fatalf("Failed initializing new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{2}, matrix, 5)
if err == nil {
t.Fatal("Should have failed inserting a non-square matrix", matrix)
}
matrix, err = newMatrix(3, 3)
if err != nil {
t.Fatalf("Failed initializing new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{0, 1}, matrix, 5)
if err != nil {
t.Fatalf("Failed inserting new Matrix : %s", err)
}
}
func TestDoubleInsertInvertedMatrix(t *testing.T) {
tree := newInversionTree(3, 2)
matrix, err := newMatrix(3, 3)
if err != nil {
t.Fatalf("Failed initializing new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{1}, matrix, 5)
if err != nil {
t.Fatalf("Failed inserting new Matrix : %s", err)
}
err = tree.InsertInvertedMatrix([]int{1}, matrix, 5)
if err != nil {
t.Fatalf("Failed inserting new Matrix : %s", err)
}
cachedMatrix := tree.GetInvertedMatrix([]int{1})
if cachedMatrix == nil {
t.Fatal(cachedMatrix, "== nil")
}
if matrix.String() != cachedMatrix.String() {
t.Fatal(matrix.String(), "!=", cachedMatrix.String())
}
}

217
vendor/github.com/klauspost/reedsolomon/matrix_test.go generated vendored Normal file
View File

@@ -0,0 +1,217 @@
/**
* Unit tests for Matrix
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc. All rights reserved.
*/
package reedsolomon
import (
"testing"
)
// TestNewMatrix - Tests validate the result for invalid input and the allocations made by newMatrix method.
func TestNewMatrix(t *testing.T) {
testCases := []struct {
rows int
columns int
// flag to indicate whether the test should pass.
shouldPass bool
expectedResult matrix
expectedErr error
}{
// Test case - 1.
// Test case with a negative row size.
{-1, 10, false, nil, errInvalidRowSize},
// Test case - 2.
// Test case with a negative column size.
{10, -1, false, nil, errInvalidColSize},
// Test case - 3.
// Test case with negative value for both row and column size.
{-1, -1, false, nil, errInvalidRowSize},
// Test case - 4.
// Test case with 0 value for row size.
{0, 10, false, nil, errInvalidRowSize},
// Test case - 5.
// Test case with 0 value for column size.
{-1, 0, false, nil, errInvalidRowSize},
// Test case - 6.
// Test case with 0 value for both row and column size.
{0, 0, false, nil, errInvalidRowSize},
}
for i, testCase := range testCases {
actualResult, actualErr := newMatrix(testCase.rows, testCase.columns)
if actualErr != nil && testCase.shouldPass {
t.Errorf("Test %d: Expected to pass, but failed with: <ERROR> %s", i+1, actualErr.Error())
}
if actualErr == nil && !testCase.shouldPass {
t.Errorf("Test %d: Expected to fail with <ERROR> \"%s\", but passed instead.", i+1, testCase.expectedErr)
}
// Failed as expected, but does it fail for the expected reason.
if actualErr != nil && !testCase.shouldPass {
if testCase.expectedErr != actualErr {
t.Errorf("Test %d: Expected to fail with error \"%s\", but instead failed with error \"%s\" instead.", i+1, testCase.expectedErr, actualErr)
}
}
// Test passes as expected, but the output values
// are verified for correctness here.
if actualErr == nil && testCase.shouldPass {
if testCase.rows != len(actualResult) {
// End the tests here if the the size doesn't match number of rows.
t.Fatalf("Test %d: Expected the size of the row of the new matrix to be `%d`, but instead found `%d`", i+1, testCase.rows, len(actualResult))
}
// Iterating over each row and validating the size of the column.
for j, row := range actualResult {
// If the row check passes, verify the size of each columns.
if testCase.columns != len(row) {
t.Errorf("Test %d: Row %d: Expected the size of the column of the new matrix to be `%d`, but instead found `%d`", i+1, j+1, testCase.columns, len(row))
}
}
}
}
}
// TestMatrixIdentity - validates the method for returning identity matrix of given size.
func TestMatrixIdentity(t *testing.T) {
m, err := identityMatrix(3)
if err != nil {
t.Fatal(err)
}
str := m.String()
expect := "[[1, 0, 0], [0, 1, 0], [0, 0, 1]]"
if str != expect {
t.Fatal(str, "!=", expect)
}
}
// Tests validate the output of matix multiplication method.
func TestMatrixMultiply(t *testing.T) {
m1, err := newMatrixData(
[][]byte{
[]byte{1, 2},
[]byte{3, 4},
})
if err != nil {
t.Fatal(err)
}
m2, err := newMatrixData(
[][]byte{
[]byte{5, 6},
[]byte{7, 8},
})
if err != nil {
t.Fatal(err)
}
actual, err := m1.Multiply(m2)
if err != nil {
t.Fatal(err)
}
str := actual.String()
expect := "[[11, 22], [19, 42]]"
if str != expect {
t.Fatal(str, "!=", expect)
}
}
// Tests validate the output of the method with computes inverse of matrix.
func TestMatrixInverse(t *testing.T) {
testCases := []struct {
matrixData [][]byte
// expected inverse matrix.
expectedResult string
// flag indicating whether the test should pass.
shouldPass bool
expectedErr error
}{
// Test case - 1.
// Test case validating inverse of the input Matrix.
{
// input data to construct the matrix.
[][]byte{
[]byte{56, 23, 98},
[]byte{3, 100, 200},
[]byte{45, 201, 123},
},
// expected Inverse matrix.
"[[175, 133, 33], [130, 13, 245], [112, 35, 126]]",
// test is expected to pass.
true,
nil,
},
// Test case - 2.
// Test case validating inverse of the input Matrix.
{
// input data to contruct the matrix.
[][]byte{
[]byte{1, 0, 0, 0, 0},
[]byte{0, 1, 0, 0, 0},
[]byte{0, 0, 0, 1, 0},
[]byte{0, 0, 0, 0, 1},
[]byte{7, 7, 6, 6, 1},
},
// expectedInverse matrix.
"[[1, 0, 0, 0, 0]," +
" [0, 1, 0, 0, 0]," +
" [123, 123, 1, 122, 122]," +
" [0, 0, 1, 0, 0]," +
" [0, 0, 0, 1, 0]]",
// test is expected to pass.
true,
nil,
},
// Test case with a non-square matrix.
// expected to fail with errNotSquare.
{
[][]byte{
[]byte{56, 23},
[]byte{3, 100},
[]byte{45, 201},
},
"",
false,
errNotSquare,
},
// Test case with singular matrix.
// expected to fail with error errSingular.
{
[][]byte{
[]byte{4, 2},
[]byte{12, 6},
},
"",
false,
errSingular,
},
}
for i, testCase := range testCases {
m, err := newMatrixData(testCase.matrixData)
if err != nil {
t.Fatalf("Test %d: Failed initializing new Matrix : %s", i+1, err)
}
actualResult, actualErr := m.Invert()
if actualErr != nil && testCase.shouldPass {
t.Errorf("Test %d: Expected to pass, but failed with: <ERROR> %s", i+1, actualErr.Error())
}
if actualErr == nil && !testCase.shouldPass {
t.Errorf("Test %d: Expected to fail with <ERROR> \"%s\", but passed instead.", i+1, testCase.expectedErr)
}
// Failed as expected, but does it fail for the expected reason.
if actualErr != nil && !testCase.shouldPass {
if testCase.expectedErr != actualErr {
t.Errorf("Test %d: Expected to fail with error \"%s\", but instead failed with error \"%s\" instead.", i+1, testCase.expectedErr, actualErr)
}
}
// Test passes as expected, but the output values
// are verified for correctness here.
if actualErr == nil && testCase.shouldPass {
if testCase.expectedResult != actualResult.String() {
t.Errorf("Test %d: The inverse matrix doesnt't match the expected result", i+1)
}
}
}
}

View File

@@ -0,0 +1,761 @@
/**
* Unit tests for ReedSolomon
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc. All rights reserved.
*/
package reedsolomon
import (
"bytes"
"math/rand"
"runtime"
"testing"
)
func testOpts() [][]Option {
if !testing.Short() {
return [][]Option{}
}
opts := [][]Option{
{WithMaxGoroutines(1), WithMinSplitSize(500), withSSE3(false), withAVX2(false)},
{WithMaxGoroutines(5000), WithMinSplitSize(50), withSSE3(false), withAVX2(false)},
{WithMaxGoroutines(5000), WithMinSplitSize(500000), withSSE3(false), withAVX2(false)},
{WithMaxGoroutines(1), WithMinSplitSize(500000), withSSE3(false), withAVX2(false)},
}
for _, o := range opts[:] {
if defaultOptions.useSSSE3 {
n := make([]Option, len(o), len(o)+1)
copy(n, o)
n = append(n, withSSE3(true))
opts = append(opts, n)
}
if defaultOptions.useAVX2 {
n := make([]Option, len(o), len(o)+1)
copy(n, o)
n = append(n, withAVX2(true))
opts = append(opts, n)
}
}
return opts
}
func TestEncoding(t *testing.T) {
testEncoding(t)
for _, o := range testOpts() {
testEncoding(t, o...)
}
}
func testEncoding(t *testing.T, o ...Option) {
perShard := 50000
r, err := New(10, 3, o...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
err = r.Encode(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
badShards := make([][]byte, 13)
badShards[0] = make([]byte, 1)
err = r.Encode(badShards)
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
}
func TestReconstruct(t *testing.T) {
testReconstruct(t)
for _, o := range testOpts() {
testReconstruct(t, o...)
}
}
func testReconstruct(t *testing.T, o ...Option) {
perShard := 50000
r, err := New(10, 3, o...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 13)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 13; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with all shards present
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Reconstruct with 10 shards present
shards[0] = nil
shards[7] = nil
shards[11] = nil
err = r.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Reconstruct with 9 shards present (should fail)
shards[0] = nil
shards[4] = nil
shards[7] = nil
shards[11] = nil
err = r.Reconstruct(shards)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(make([][]byte, 13))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestVerify(t *testing.T) {
testVerify(t)
for _, o := range testOpts() {
testVerify(t, o...)
}
}
func testVerify(t *testing.T, o ...Option) {
perShard := 33333
r, err := New(10, 4, o...)
if err != nil {
t.Fatal(err)
}
shards := make([][]byte, 14)
for s := range shards {
shards[s] = make([]byte, perShard)
}
rand.Seed(0)
for s := 0; s < 10; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Put in random data. Verification should fail
fillRandom(shards[10])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
// Re-encode
err = r.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Fill a data segment with random data
fillRandom(shards[0])
ok, err = r.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
_, err = r.Verify(make([][]byte, 1))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
_, err = r.Verify(make([][]byte, 14))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestOneEncode(t *testing.T) {
codec, err := New(5, 5)
if err != nil {
t.Fatal(err)
}
shards := [][]byte{
{0, 1},
{4, 5},
{2, 3},
{6, 7},
{8, 9},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
{0, 0},
}
codec.Encode(shards)
if shards[5][0] != 12 || shards[5][1] != 13 {
t.Fatal("shard 5 mismatch")
}
if shards[6][0] != 10 || shards[6][1] != 11 {
t.Fatal("shard 6 mismatch")
}
if shards[7][0] != 14 || shards[7][1] != 15 {
t.Fatal("shard 7 mismatch")
}
if shards[8][0] != 90 || shards[8][1] != 91 {
t.Fatal("shard 8 mismatch")
}
if shards[9][0] != 94 || shards[9][1] != 95 {
t.Fatal("shard 9 mismatch")
}
ok, err := codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("did not verify")
}
shards[8][0]++
ok, err = codec.Verify(shards)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("verify did not fail as expected")
}
}
func fillRandom(p []byte) {
for i := 0; i < len(p); i += 7 {
val := rand.Int63()
for j := 0; i+j < len(p) && j < 7; j++ {
p[i+j] = byte(val)
val >>= 8
}
}
}
func benchmarkEncode(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, dataShards+parityShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkEncode10x2x10000(b *testing.B) {
benchmarkEncode(b, 10, 2, 10000)
}
func BenchmarkEncode100x20x10000(b *testing.B) {
benchmarkEncode(b, 100, 20, 10000)
}
func BenchmarkEncode17x3x1M(b *testing.B) {
benchmarkEncode(b, 17, 3, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 16MB each.
func BenchmarkEncode10x4x16M(b *testing.B) {
benchmarkEncode(b, 10, 4, 16*1024*1024)
}
// Benchmark 5 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode5x2x1M(b *testing.B) {
benchmarkEncode(b, 5, 2, 1024*1024)
}
// Benchmark 1 data shards and 2 parity shards with 1MB each.
func BenchmarkEncode10x2x1M(b *testing.B) {
benchmarkEncode(b, 10, 2, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 1MB each.
func BenchmarkEncode10x4x1M(b *testing.B) {
benchmarkEncode(b, 10, 4, 1024*1024)
}
// Benchmark 50 data shards and 20 parity shards with 1MB each.
func BenchmarkEncode50x20x1M(b *testing.B) {
benchmarkEncode(b, 50, 20, 1024*1024)
}
// Benchmark 17 data shards and 3 parity shards with 16MB each.
func BenchmarkEncode17x3x16M(b *testing.B) {
benchmarkEncode(b, 17, 3, 16*1024*1024)
}
func benchmarkVerify(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err = r.Verify(shards)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkVerify10x2x10000(b *testing.B) {
benchmarkVerify(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkVerify50x5x50000(b *testing.B) {
benchmarkVerify(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify10x2x1M(b *testing.B) {
benchmarkVerify(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify5x2x1M(b *testing.B) {
benchmarkVerify(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkVerify10x4x1M(b *testing.B) {
benchmarkVerify(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkVerify50x20x1M(b *testing.B) {
benchmarkVerify(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkVerify10x4x16M(b *testing.B) {
benchmarkVerify(b, 10, 4, 16*1024*1024)
}
func corruptRandom(shards [][]byte, dataShards, parityShards int) {
shardsToCorrupt := rand.Intn(parityShards)
for i := 1; i <= shardsToCorrupt; i++ {
shards[rand.Intn(dataShards+parityShards)] = nil
}
}
func benchmarkReconstruct(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
b.Fatal(err)
}
if !ok {
b.Fatal("Verification failed")
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstruct10x2x10000(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstruct50x5x50000(b *testing.B) {
benchmarkReconstruct(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x2x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct5x2x1M(b *testing.B) {
benchmarkReconstruct(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstruct10x4x1M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstruct50x20x1M(b *testing.B) {
benchmarkReconstruct(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstruct10x4x16M(b *testing.B) {
benchmarkReconstruct(b, 10, 4, 16*1024*1024)
}
func benchmarkReconstructP(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := New(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
runtime.GOMAXPROCS(runtime.NumCPU())
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(shards)
if err != nil {
b.Fatal(err)
}
for pb.Next() {
corruptRandom(shards, dataShards, parityShards)
err = r.Reconstruct(shards)
if err != nil {
b.Fatal(err)
}
ok, err := r.Verify(shards)
if err != nil {
b.Fatal(err)
}
if !ok {
b.Fatal("Verification failed")
}
}
})
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkReconstructP10x2x10000(b *testing.B) {
benchmarkReconstructP(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkReconstructP50x5x50000(b *testing.B) {
benchmarkReconstructP(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP10x2x1M(b *testing.B) {
benchmarkReconstructP(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP5x2x1M(b *testing.B) {
benchmarkReconstructP(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkReconstructP10x4x1M(b *testing.B) {
benchmarkReconstructP(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkReconstructP50x20x1M(b *testing.B) {
benchmarkReconstructP(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkReconstructP10x4x16M(b *testing.B) {
benchmarkReconstructP(b, 10, 4, 16*1024*1024)
}
func TestEncoderReconstruct(t *testing.T) {
testEncoderReconstruct(t)
for _, o := range testOpts() {
testEncoderReconstruct(t, o...)
}
}
func testEncoderReconstruct(t *testing.T, o ...Option) {
// Create some sample data
var data = make([]byte, 250000)
fillRandom(data)
// Create 5 data slices of 50000 elements each
enc, err := New(5, 3, o...)
if err != nil {
t.Fatal(err)
}
shards, err := enc.Split(data)
if err != nil {
t.Fatal(err)
}
err = enc.Encode(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err := enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Delete a shard
shards[0] = nil
// Should reconstruct
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if !ok || err != nil {
t.Fatal("not ok:", ok, "err:", err)
}
// Recover original bytes
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data) {
t.Fatal("recovered bytes do not match")
}
// Corrupt a shard
shards[0] = nil
shards[1][0], shards[1][500] = 75, 75
// Should reconstruct (but with corrupted data)
err = enc.Reconstruct(shards)
if err != nil {
t.Fatal(err)
}
// Check that it verifies
ok, err = enc.Verify(shards)
if ok || err != nil {
t.Fatal("error or ok:", ok, "err:", err)
}
// Recovered data should not match original
buf.Reset()
err = enc.Join(buf, shards, len(data))
if err != nil {
t.Fatal(err)
}
if bytes.Equal(buf.Bytes(), data) {
t.Fatal("corrupted data matches original")
}
}
func TestSplitJoin(t *testing.T) {
var data = make([]byte, 250000)
rand.Seed(0)
fillRandom(data)
enc, _ := New(5, 3)
shards, err := enc.Split(data)
if err != nil {
t.Fatal(err)
}
_, err = enc.Split([]byte{})
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
buf := new(bytes.Buffer)
err = enc.Join(buf, shards, 50)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf.Bytes(), data[:50]) {
t.Fatal("recovered data does match original")
}
err = enc.Join(buf, [][]byte{}, 0)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = enc.Join(buf, shards, len(data)+1)
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
shards[0] = nil
err = enc.Join(buf, shards, len(data))
if err != ErrReconstructRequired {
t.Errorf("expected %v, got %v", ErrReconstructRequired, err)
}
}
func TestCodeSomeShards(t *testing.T) {
var data = make([]byte, 250000)
fillRandom(data)
enc, _ := New(5, 3)
r := enc.(*reedSolomon) // need to access private methods
shards, _ := enc.Split(data)
old := runtime.GOMAXPROCS(1)
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:], r.ParityShards, len(shards[0]))
// hopefully more than 1 CPU
runtime.GOMAXPROCS(runtime.NumCPU())
r.codeSomeShards(r.parity, shards[:r.DataShards], shards[r.DataShards:], r.ParityShards, len(shards[0]))
// reset MAXPROCS, otherwise testing complains
runtime.GOMAXPROCS(old)
}
func TestAllMatrices(t *testing.T) {
t.Skip("Skipping slow matrix check")
for i := 1; i < 257; i++ {
_, err := New(i, i)
if err != nil {
t.Fatal("creating matrix size", i, i, ":", err)
}
}
}
func TestNew(t *testing.T) {
tests := []struct {
data, parity int
err error
}{
{127, 127, nil},
{256, 256, ErrMaxShardNum},
{0, 1, ErrInvShardNum},
{1, 0, ErrInvShardNum},
{257, 1, ErrMaxShardNum},
// overflow causes r.Shards to be negative
{256, int(^uint(0) >> 1), errInvalidRowSize},
}
for _, test := range tests {
_, err := New(test.data, test.parity)
if err != test.err {
t.Errorf("New(%v, %v): expected %v, got %v", test.data, test.parity, test.err, err)
}
}
}

View File

@@ -0,0 +1,604 @@
/**
* Unit tests for ReedSolomon Streaming API
*
* Copyright 2015, Klaus Post
*/
package reedsolomon
import (
"bytes"
"io"
"io/ioutil"
"math/rand"
"testing"
)
func TestStreamEncoding(t *testing.T) {
perShard := 10 << 20
if testing.Short() {
perShard = 50000
}
r, err := NewStream(10, 3)
if err != nil {
t.Fatal(err)
}
rand.Seed(0)
input := randomBytes(10, perShard)
data := toBuffers(input)
par := emptyBuffers(3)
err = r.Encode(toReaders(data), toWriters(par))
if err != nil {
t.Fatal(err)
}
// Reset Data
data = toBuffers(input)
all := append(toReaders(data), toReaders(par)...)
ok, err := r.Verify(all)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
err = r.Encode(toReaders(emptyBuffers(1)), toWriters(emptyBuffers(1)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Encode(toReaders(emptyBuffers(10)), toWriters(emptyBuffers(1)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Encode(toReaders(emptyBuffers(10)), toWriters(emptyBuffers(3)))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
badShards := emptyBuffers(10)
badShards[0] = randomBuffer(123)
err = r.Encode(toReaders(badShards), toWriters(emptyBuffers(3)))
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
}
func TestStreamEncodingConcurrent(t *testing.T) {
perShard := 10 << 20
if testing.Short() {
perShard = 50000
}
r, err := NewStreamC(10, 3, true, true)
if err != nil {
t.Fatal(err)
}
rand.Seed(0)
input := randomBytes(10, perShard)
data := toBuffers(input)
par := emptyBuffers(3)
err = r.Encode(toReaders(data), toWriters(par))
if err != nil {
t.Fatal(err)
}
// Reset Data
data = toBuffers(input)
all := append(toReaders(data), toReaders(par)...)
ok, err := r.Verify(all)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
err = r.Encode(toReaders(emptyBuffers(1)), toWriters(emptyBuffers(1)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Encode(toReaders(emptyBuffers(10)), toWriters(emptyBuffers(1)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Encode(toReaders(emptyBuffers(10)), toWriters(emptyBuffers(3)))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
badShards := emptyBuffers(10)
badShards[0] = randomBuffer(123)
badShards[1] = randomBuffer(123)
err = r.Encode(toReaders(badShards), toWriters(emptyBuffers(3)))
if err != ErrShardSize {
t.Errorf("expected %v, got %v", ErrShardSize, err)
}
}
func randomBuffer(length int) *bytes.Buffer {
b := make([]byte, length)
fillRandom(b)
return bytes.NewBuffer(b)
}
func randomBytes(n, length int) [][]byte {
bufs := make([][]byte, n)
for j := range bufs {
bufs[j] = make([]byte, length)
fillRandom(bufs[j])
}
return bufs
}
func toBuffers(in [][]byte) []*bytes.Buffer {
out := make([]*bytes.Buffer, len(in))
for i := range in {
out[i] = bytes.NewBuffer(in[i])
}
return out
}
func toReaders(in []*bytes.Buffer) []io.Reader {
out := make([]io.Reader, len(in))
for i := range in {
out[i] = in[i]
}
return out
}
func toWriters(in []*bytes.Buffer) []io.Writer {
out := make([]io.Writer, len(in))
for i := range in {
out[i] = in[i]
}
return out
}
func nilWriters(n int) []io.Writer {
out := make([]io.Writer, n)
for i := range out {
out[i] = nil
}
return out
}
func emptyBuffers(n int) []*bytes.Buffer {
b := make([]*bytes.Buffer, n)
for i := range b {
b[i] = &bytes.Buffer{}
}
return b
}
func toBytes(in []*bytes.Buffer) [][]byte {
b := make([][]byte, len(in))
for i := range in {
b[i] = in[i].Bytes()
}
return b
}
func TestStreamReconstruct(t *testing.T) {
perShard := 10 << 20
if testing.Short() {
perShard = 50000
}
r, err := NewStream(10, 3)
if err != nil {
t.Fatal(err)
}
rand.Seed(0)
shards := randomBytes(10, perShard)
parb := emptyBuffers(3)
err = r.Encode(toReaders(toBuffers(shards)), toWriters(parb))
if err != nil {
t.Fatal(err)
}
parity := toBytes(parb)
all := append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
fill := make([]io.Writer, 13)
// Reconstruct with all shards present, all fill nil
err = r.Reconstruct(all, fill)
if err != nil {
t.Fatal(err)
}
all = append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
// Reconstruct with 10 shards present
all[0] = nil
fill[0] = emptyBuffers(1)[0]
all[7] = nil
fill[7] = emptyBuffers(1)[0]
all[11] = nil
fill[11] = emptyBuffers(1)[0]
err = r.Reconstruct(all, fill)
if err != nil {
t.Fatal(err)
}
shards[0] = fill[0].(*bytes.Buffer).Bytes()
shards[7] = fill[7].(*bytes.Buffer).Bytes()
parity[1] = fill[11].(*bytes.Buffer).Bytes()
all = append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
ok, err := r.Verify(all)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
all = append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
// Reconstruct with 9 shards present (should fail)
all[0] = nil
fill[0] = emptyBuffers(1)[0]
all[4] = nil
fill[4] = emptyBuffers(1)[0]
all[7] = nil
fill[7] = emptyBuffers(1)[0]
all[11] = nil
fill[11] = emptyBuffers(1)[0]
err = r.Reconstruct(all, fill)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(toReaders(emptyBuffers(3)), toWriters(emptyBuffers(3)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(toReaders(emptyBuffers(13)), toWriters(emptyBuffers(3)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
err = r.Reconstruct(toReaders(emptyBuffers(13)), toWriters(emptyBuffers(13)))
if err != ErrReconstructMismatch {
t.Errorf("expected %v, got %v", ErrReconstructMismatch, err)
}
err = r.Reconstruct(toReaders(emptyBuffers(13)), nilWriters(13))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestStreamVerify(t *testing.T) {
perShard := 10 << 20
if testing.Short() {
perShard = 50000
}
r, err := NewStream(10, 4)
if err != nil {
t.Fatal(err)
}
shards := randomBytes(10, perShard)
parb := emptyBuffers(4)
err = r.Encode(toReaders(toBuffers(shards)), toWriters(parb))
if err != nil {
t.Fatal(err)
}
parity := toBytes(parb)
all := append(toReaders(toBuffers(shards)), toReaders(parb)...)
ok, err := r.Verify(all)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("Verification failed")
}
// Flip bits in a random byte
parity[0][len(parity[0])-20000] = parity[0][len(parity[0])-20000] ^ 0xff
all = append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
ok, err = r.Verify(all)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
// Re-encode
err = r.Encode(toReaders(toBuffers(shards)), toWriters(parb))
if err != nil {
t.Fatal(err)
}
// Fill a data segment with random data
shards[0][len(shards[0])-30000] = shards[0][len(shards[0])-30000] ^ 0xff
all = append(toReaders(toBuffers(shards)), toReaders(parb)...)
ok, err = r.Verify(all)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("Verification did not fail")
}
_, err = r.Verify(toReaders(emptyBuffers(10)))
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
_, err = r.Verify(toReaders(emptyBuffers(14)))
if err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, err)
}
}
func TestStreamOneEncode(t *testing.T) {
codec, err := NewStream(5, 5)
if err != nil {
t.Fatal(err)
}
shards := [][]byte{
{0, 1},
{4, 5},
{2, 3},
{6, 7},
{8, 9},
}
parb := emptyBuffers(5)
codec.Encode(toReaders(toBuffers(shards)), toWriters(parb))
parity := toBytes(parb)
if parity[0][0] != 12 || parity[0][1] != 13 {
t.Fatal("shard 5 mismatch")
}
if parity[1][0] != 10 || parity[1][1] != 11 {
t.Fatal("shard 6 mismatch")
}
if parity[2][0] != 14 || parity[2][1] != 15 {
t.Fatal("shard 7 mismatch")
}
if parity[3][0] != 90 || parity[3][1] != 91 {
t.Fatal("shard 8 mismatch")
}
if parity[4][0] != 94 || parity[4][1] != 95 {
t.Fatal("shard 9 mismatch")
}
all := append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
ok, err := codec.Verify(all)
if err != nil {
t.Fatal(err)
}
if !ok {
t.Fatal("did not verify")
}
shards[3][0]++
all = append(toReaders(toBuffers(shards)), toReaders(toBuffers(parity))...)
ok, err = codec.Verify(all)
if err != nil {
t.Fatal(err)
}
if ok {
t.Fatal("verify did not fail as expected")
}
}
func benchmarkStreamEncode(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := NewStream(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
out := make([]io.Writer, parityShards)
for i := range out {
out[i] = ioutil.Discard
}
for i := 0; i < b.N; i++ {
err = r.Encode(toReaders(toBuffers(shards)), out)
if err != nil {
b.Fatal(err)
}
}
}
func BenchmarkStreamEncode10x2x10000(b *testing.B) {
benchmarkStreamEncode(b, 10, 2, 10000)
}
func BenchmarkStreamEncode100x20x10000(b *testing.B) {
benchmarkStreamEncode(b, 100, 20, 10000)
}
func BenchmarkStreamEncode17x3x1M(b *testing.B) {
benchmarkStreamEncode(b, 17, 3, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 16MB each.
func BenchmarkStreamEncode10x4x16M(b *testing.B) {
benchmarkStreamEncode(b, 10, 4, 16*1024*1024)
}
// Benchmark 5 data shards and 2 parity shards with 1MB each.
func BenchmarkStreamEncode5x2x1M(b *testing.B) {
benchmarkStreamEncode(b, 5, 2, 1024*1024)
}
// Benchmark 1 data shards and 2 parity shards with 1MB each.
func BenchmarkStreamEncode10x2x1M(b *testing.B) {
benchmarkStreamEncode(b, 10, 2, 1024*1024)
}
// Benchmark 10 data shards and 4 parity shards with 1MB each.
func BenchmarkStreamEncode10x4x1M(b *testing.B) {
benchmarkStreamEncode(b, 10, 4, 1024*1024)
}
// Benchmark 50 data shards and 20 parity shards with 1MB each.
func BenchmarkStreamEncode50x20x1M(b *testing.B) {
benchmarkStreamEncode(b, 50, 20, 1024*1024)
}
// Benchmark 17 data shards and 3 parity shards with 16MB each.
func BenchmarkStreamEncode17x3x16M(b *testing.B) {
benchmarkStreamEncode(b, 17, 3, 16*1024*1024)
}
func benchmarkStreamVerify(b *testing.B, dataShards, parityShards, shardSize int) {
r, err := NewStream(dataShards, parityShards)
if err != nil {
b.Fatal(err)
}
shards := make([][]byte, parityShards+dataShards)
for s := range shards {
shards[s] = make([]byte, shardSize)
}
rand.Seed(0)
for s := 0; s < dataShards; s++ {
fillRandom(shards[s])
}
err = r.Encode(toReaders(toBuffers(shards[:dataShards])), toWriters(toBuffers(shards[dataShards:])))
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(shardSize * dataShards))
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err = r.Verify(toReaders(toBuffers(shards)))
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark 10 data slices with 2 parity slices holding 10000 bytes each
func BenchmarkStreamVerify10x2x10000(b *testing.B) {
benchmarkStreamVerify(b, 10, 2, 10000)
}
// Benchmark 50 data slices with 5 parity slices holding 100000 bytes each
func BenchmarkStreamVerify50x5x50000(b *testing.B) {
benchmarkStreamVerify(b, 50, 5, 100000)
}
// Benchmark 10 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkStreamVerify10x2x1M(b *testing.B) {
benchmarkStreamVerify(b, 10, 2, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkStreamVerify5x2x1M(b *testing.B) {
benchmarkStreamVerify(b, 5, 2, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 1MB bytes each
func BenchmarkStreamVerify10x4x1M(b *testing.B) {
benchmarkStreamVerify(b, 10, 4, 1024*1024)
}
// Benchmark 5 data slices with 2 parity slices holding 1MB bytes each
func BenchmarkStreamVerify50x20x1M(b *testing.B) {
benchmarkStreamVerify(b, 50, 20, 1024*1024)
}
// Benchmark 10 data slices with 4 parity slices holding 16MB bytes each
func BenchmarkStreamVerify10x4x16M(b *testing.B) {
benchmarkStreamVerify(b, 10, 4, 16*1024*1024)
}
func TestStreamSplitJoin(t *testing.T) {
var data = make([]byte, 250000)
rand.Seed(0)
fillRandom(data)
enc, _ := NewStream(5, 3)
split := emptyBuffers(5)
err := enc.Split(bytes.NewBuffer(data), toWriters(split), int64(len(data)))
if err != nil {
t.Fatal(err)
}
splits := toBytes(split)
expect := len(data) / 5
// Beware, if changing data size
if split[0].Len() != expect {
t.Errorf("unexpected size. expected %d, got %d", expect, split[0].Len())
}
err = enc.Split(bytes.NewBuffer([]byte{}), toWriters(emptyBuffers(3)), 0)
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
buf := new(bytes.Buffer)
err = enc.Join(buf, toReaders(toBuffers(splits)), int64(len(data)))
if err != nil {
t.Fatal(err)
}
joined := buf.Bytes()
if !bytes.Equal(joined, data) {
t.Fatal("recovered data does match original", joined[:8], data[:8], "... lengths:", len(joined), len(data))
}
err = enc.Join(buf, toReaders(emptyBuffers(2)), 0)
if err != ErrTooFewShards {
t.Errorf("expected %v, got %v", ErrTooFewShards, err)
}
bufs := toReaders(emptyBuffers(5))
bufs[2] = nil
err = enc.Join(buf, bufs, 0)
if se, ok := err.(StreamReadError); ok {
if se.Err != ErrShardNoData {
t.Errorf("expected %v, got %v", ErrShardNoData, se.Err)
}
if se.Stream != 2 {
t.Errorf("Expected error on stream 2, got %d", se.Stream)
}
} else {
t.Errorf("expected error type %T, got %T", StreamReadError{}, err)
}
err = enc.Join(buf, toReaders(toBuffers(splits)), int64(len(data)+1))
if err != ErrShortData {
t.Errorf("expected %v, got %v", ErrShortData, err)
}
}
func TestNewStream(t *testing.T) {
tests := []struct {
data, parity int
err error
}{
{127, 127, nil},
{256, 256, ErrMaxShardNum},
{0, 1, ErrInvShardNum},
{1, 0, ErrInvShardNum},
{257, 1, ErrMaxShardNum},
// overflow causes r.Shards to be negative
{256, int(^uint(0) >> 1), errInvalidRowSize},
}
for _, test := range tests {
_, err := NewStream(test.data, test.parity)
if err != test.err {
t.Errorf("New(%v, %v): expected %v, got %v", test.data, test.parity, test.err, err)
}
}
}