frp/vendor/github.com/xtaci/kcp-go/kcp_test.go

304 lines
7.0 KiB
Go
Raw Normal View History

2017-11-01 08:21:57 +00:00
package kcp
import (
"bytes"
"container/list"
"encoding/binary"
"fmt"
"math/rand"
"sync"
"testing"
"time"
)
func iclock() int32 {
return int32((time.Now().UnixNano() / 1000000) & 0xffffffff)
}
type DelayPacket struct {
_ptr []byte
_size int
_ts int32
}
func (p *DelayPacket) Init(size int, src []byte) {
p._ptr = make([]byte, size)
p._size = size
copy(p._ptr, src[:size])
}
func (p *DelayPacket) ptr() []byte { return p._ptr }
func (p *DelayPacket) size() int { return p._size }
func (p *DelayPacket) ts() int32 { return p._ts }
func (p *DelayPacket) setts(ts int32) { p._ts = ts }
type DelayTunnel struct{ *list.List }
type Random *rand.Rand
type LatencySimulator struct {
current int32
lostrate, rttmin, rttmax, nmax int
p12 DelayTunnel
p21 DelayTunnel
r12 *rand.Rand
r21 *rand.Rand
}
// lostrate: 往返一周丢包率的百分比,默认 10%
// rttminrtt最小值默认 60
// rttmaxrtt最大值默认 125
//func (p *LatencySimulator)Init(int lostrate = 10, int rttmin = 60, int rttmax = 125, int nmax = 1000):
func (p *LatencySimulator) Init(lostrate, rttmin, rttmax, nmax int) {
p.r12 = rand.New(rand.NewSource(9))
p.r21 = rand.New(rand.NewSource(99))
p.p12 = DelayTunnel{list.New()}
p.p21 = DelayTunnel{list.New()}
p.current = iclock()
p.lostrate = lostrate / 2 // 上面数据是往返丢包率单程除以2
p.rttmin = rttmin / 2
p.rttmax = rttmax / 2
p.nmax = nmax
}
// 发送数据
// peer - 端点0/1从0发送从1接收从1发送从0接收
func (p *LatencySimulator) send(peer int, data []byte, size int) int {
rnd := 0
if peer == 0 {
rnd = p.r12.Intn(100)
} else {
rnd = p.r21.Intn(100)
}
//println("!!!!!!!!!!!!!!!!!!!!", rnd, p.lostrate, peer)
if rnd < p.lostrate {
return 0
}
pkt := &DelayPacket{}
pkt.Init(size, data)
p.current = iclock()
delay := p.rttmin
if p.rttmax > p.rttmin {
delay += rand.Int() % (p.rttmax - p.rttmin)
}
pkt.setts(p.current + int32(delay))
if peer == 0 {
p.p12.PushBack(pkt)
} else {
p.p21.PushBack(pkt)
}
return 1
}
// 接收数据
func (p *LatencySimulator) recv(peer int, data []byte, maxsize int) int32 {
var it *list.Element
if peer == 0 {
it = p.p21.Front()
if p.p21.Len() == 0 {
return -1
}
} else {
it = p.p12.Front()
if p.p12.Len() == 0 {
return -1
}
}
pkt := it.Value.(*DelayPacket)
p.current = iclock()
if p.current < pkt.ts() {
return -2
}
if maxsize < pkt.size() {
return -3
}
if peer == 0 {
p.p21.Remove(it)
} else {
p.p12.Remove(it)
}
maxsize = pkt.size()
copy(data, pkt.ptr()[:maxsize])
return int32(maxsize)
}
//=====================================================================
//=====================================================================
// 模拟网络
var vnet *LatencySimulator
// 测试用例
func test(mode int) {
// 创建模拟网络丢包率10%Rtt 60ms~125ms
vnet = &LatencySimulator{}
vnet.Init(10, 60, 125, 1000)
// 创建两个端点的 kcp对象第一个参数 conv是会话编号同一个会话需要相同
// 最后一个是 user参数用来传递标识
output1 := func(buf []byte, size int) {
if vnet.send(0, buf, size) != 1 {
}
}
output2 := func(buf []byte, size int) {
if vnet.send(1, buf, size) != 1 {
}
}
kcp1 := NewKCP(0x11223344, output1)
kcp2 := NewKCP(0x11223344, output2)
current := uint32(iclock())
slap := current + 20
index := 0
next := 0
var sumrtt uint32
count := 0
maxrtt := 0
// 配置窗口大小平均延迟200ms每20ms发送一个包
// 而考虑到丢包重发设置最大收发窗口为128
kcp1.WndSize(128, 128)
kcp2.WndSize(128, 128)
// 判断测试用例的模式
if mode == 0 {
// 默认模式
kcp1.NoDelay(0, 10, 0, 0)
kcp2.NoDelay(0, 10, 0, 0)
} else if mode == 1 {
// 普通模式,关闭流控等
kcp1.NoDelay(0, 10, 0, 1)
kcp2.NoDelay(0, 10, 0, 1)
} else {
// 启动快速模式
// 第二个参数 nodelay-启用以后若干常规加速将启动
// 第三个参数 interval为内部处理时钟默认设置为 10ms
// 第四个参数 resend为快速重传指标设置为2
// 第五个参数 为是否禁用常规流控,这里禁止
kcp1.NoDelay(1, 10, 2, 1)
kcp2.NoDelay(1, 10, 2, 1)
}
buffer := make([]byte, 2000)
var hr int32
ts1 := iclock()
for {
time.Sleep(1 * time.Millisecond)
current = uint32(iclock())
kcp1.Update()
kcp2.Update()
// 每隔 20mskcp1发送数据
for ; current >= slap; slap += 20 {
buf := new(bytes.Buffer)
binary.Write(buf, binary.LittleEndian, uint32(index))
index++
binary.Write(buf, binary.LittleEndian, uint32(current))
// 发送上层协议包
kcp1.Send(buf.Bytes())
//println("now", iclock())
}
// 处理虚拟网络检测是否有udp包从p1->p2
for {
hr = vnet.recv(1, buffer, 2000)
if hr < 0 {
break
}
// 如果 p2收到udp则作为下层协议输入到kcp2
kcp2.Input(buffer[:hr], true, false)
}
// 处理虚拟网络检测是否有udp包从p2->p1
for {
hr = vnet.recv(0, buffer, 2000)
if hr < 0 {
break
}
// 如果 p1收到udp则作为下层协议输入到kcp1
kcp1.Input(buffer[:hr], true, false)
//println("@@@@", hr, r)
}
// kcp2接收到任何包都返回回去
for {
hr = int32(kcp2.Recv(buffer[:10]))
// 没有收到包就退出
if hr < 0 {
break
}
// 如果收到包就回射
buf := bytes.NewReader(buffer)
var sn uint32
binary.Read(buf, binary.LittleEndian, &sn)
kcp2.Send(buffer[:hr])
}
// kcp1收到kcp2的回射数据
for {
hr = int32(kcp1.Recv(buffer[:10]))
buf := bytes.NewReader(buffer)
// 没有收到包就退出
if hr < 0 {
break
}
var sn uint32
var ts, rtt uint32
binary.Read(buf, binary.LittleEndian, &sn)
binary.Read(buf, binary.LittleEndian, &ts)
rtt = uint32(current) - ts
if sn != uint32(next) {
// 如果收到的包不连续
//for i:=0;i<8 ;i++ {
//println("---", i, buffer[i])
//}
println("ERROR sn ", count, "<->", next, sn)
return
}
next++
sumrtt += rtt
count++
if rtt > uint32(maxrtt) {
maxrtt = int(rtt)
}
//println("[RECV] mode=", mode, " sn=", sn, " rtt=", rtt)
}
if next > 100 {
break
}
}
ts1 = iclock() - ts1
names := []string{"default", "normal", "fast"}
fmt.Printf("%s mode result (%dms):\n", names[mode], ts1)
fmt.Printf("avgrtt=%d maxrtt=%d\n", int(sumrtt/uint32(count)), maxrtt)
}
func TestNetwork(t *testing.T) {
test(0) // 默认模式,类似 TCP正常模式无快速重传常规流控
test(1) // 普通模式,关闭流控等
test(2) // 快速模式,所有开关都打开,且关闭流控
}
func BenchmarkFlush(b *testing.B) {
kcp := NewKCP(1, func(buf []byte, size int) {})
kcp.snd_buf = make([]segment, 32)
for k := range kcp.snd_buf {
kcp.snd_buf[k].xmit = 1
kcp.snd_buf[k].resendts = currentMs() + 10000
}
b.ResetTimer()
b.ReportAllocs()
var mu sync.Mutex
for i := 0; i < b.N; i++ {
mu.Lock()
kcp.flush(false)
mu.Unlock()
}
}